Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Liên hợp:v
a) ĐK: \(x\ge-2\)
PT<=> \(\sqrt{x+5}-2+\sqrt{x+2}-1+2\left(x+1\right)=0\)
\(\Leftrightarrow\frac{x+1}{\sqrt{x+5}+2}+\frac{x+1}{\sqrt{x+2}+1}+2\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{\sqrt{x+5}+2}+\frac{1}{\sqrt{x+2}+1}+2\right)=0\)
Cái ngoặc to nhìn sơ qua cũng thấy nó >0 :v
Do đó x = -1
Vậy...
P/s: cô @Akai Haruma check giúp em ạ!
Nguyễn Việt Lâm, svtkvtm, Trần Thanh Phương, Phạm Hoàng Hải Anh, DƯƠNG PHAN KHÁNH DƯƠNG, @Akai Haruma
\(a,\sqrt{2x+5}=\sqrt{1-x}\)
\(\Rightarrow2x+5=1-x\)
\(2x+x=1-5\)
\(3x=-4\Leftrightarrow x=\frac{-4}{3}\)
Vậy \(S=\left\{-\frac{4}{3}\right\}\)thuộc tập nghiệm của pt trên
1) \(\sqrt{3-x}=3x-5\)
\(\Leftrightarrow\left(\sqrt{3-x}\right)^2=\left(3x-5\right)^2\)
\(\Leftrightarrow3-x=9^2-30x+25\)
\(\Rightarrow x=\frac{11}{9};x=2\)
2) \(x-\sqrt{4x-3}\)
\(\Leftrightarrow x-\sqrt{4x-3}-x=2x-x\)
\(\Leftrightarrow-\sqrt{4-x}=2-x\)
\(\Leftrightarrow\left(-\sqrt{4x-3}\right)^2=\left(2-x\right)^2\)
\(\Leftrightarrow4x-3=4-4x+x^2\)
\(\Rightarrow x=1;x=7\)
4) \(\sqrt{x+1}=x-1\)
\(\Leftrightarrow\left(\sqrt{x+1}\right)^2=\left(x-1\right)^2\)
\(\Leftrightarrow x+1=x^2-2x+1\)
\(\Leftrightarrow x=3;x=0\)
\(\Rightarrow x=3;x=0\)
5) \(\sqrt{x^2-1}=x+1\)
\(\Leftrightarrow\left(\sqrt{x^2-1}\right)^2=\left(x+1\right)^2\)
\(\Leftrightarrow x^2-1=x^2+2x+1\)
\(\Rightarrow x=-1\)
6) \(\sqrt{x^2-4x+3}=x-2\)
\(\Leftrightarrow\left(\sqrt{x^2-4x+3}\right)^2=\left(x-2\right)^2\)
\(\Leftrightarrow x^2-4x+3=x^2-4x+4\)
\(\Leftrightarrow x=3;x=4\)
\(\Rightarrow x=3;x=4\)
7) \(\sqrt{x^2-1}=x-1\)
\(\Leftrightarrow\left(\sqrt{x^2-1}\right)^2=\left(x-1\right)^2\)
\(\Leftrightarrow x^2-1=x^2-2x+1\)
\(\Rightarrow x=1\)
8) \(x-2\sqrt{x-1}=16\)
\(\Leftrightarrow x-2\sqrt{x-1}-x=16-x\)
\(\Leftrightarrow-2\sqrt{x-1}=16-x\)
\(\Leftrightarrow\left(-2\sqrt{x-1}\right)^2=\left(16-x\right)^2\)
\(\Leftrightarrow4x-4=256-32x+x^2\)
\(\Leftrightarrow x=26;x=10\)
\(\Rightarrow x=26;x=10\)
9) \(\sqrt{5-x^2}=x-1\)
\(\Leftrightarrow\left(\sqrt{5-x^2}\right)^2=\left(x+1\right)^2\)
\(\Leftrightarrow5-x^2=x^2-2x+1\)
\(\Leftrightarrow x=2;x=-1\)
\(\Rightarrow x=2;x=-1\)
10) \(x-\sqrt{4x-3}=2\)
\(\Leftrightarrow x-\sqrt{4x-3}-x=2-x\)
\(\Leftrightarrow-\sqrt{4x-3}=2-x\)
\(\Leftrightarrow\left(-\sqrt{4x-3}\right)^2=\left(2-x\right)^2\)
\(\Leftrightarrow4x-3=4-4x+x^2\)
\(\Leftrightarrow x=7;x=1\)
\(\Rightarrow x=1;x=7\)
Mk ko chắc
b,
+ Với \(x=0\) \(\Rightarrow PTVN\)
+ Với \(x\ne0\), chia cả 2 vế cho \(x^2\) :
\(PT\Leftrightarrow x^2-16x+46+\frac{144}{x}+\frac{81}{x^2}=0\)
\(\Leftrightarrow\left(x^2+\frac{81}{x^2}\right)-16\left(x-\frac{9}{x}\right)+46=0\)
Đặt \(x-\frac{9}{x}=t\Rightarrow t^2=x^2+\frac{81}{x^2}-18\)
\(\Leftrightarrow t^2+18-16t+46=0\)
\(\Leftrightarrow t^2-16t+64=0\Rightarrow t=8\)
\(\Leftrightarrow x-\frac{9}{x}=8\Leftrightarrow x^2-8x-9=0\) \(\Rightarrow\left[{}\begin{matrix}x=-1\\x=9\end{matrix}\right.\) (t/m)
cậu xem làm được mấy bài kia không làm giùm với (đang gấp) :))
1/ Đặt \(\sqrt{x^2+x+1}=a>0\)
\(\Rightarrow a^2+2-3a=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=1\\a=2\end{cases}}\)
2/ \(\sqrt{x+5}-\sqrt{x}=\sqrt{x-3}\)
\(\Leftrightarrow\sqrt{x+5}=\sqrt{x}+\sqrt{x-3}\)
\(\Leftrightarrow8-x=2\sqrt{x\left(x-3\right)}\)
\(\Leftrightarrow-3x^2-4x+64=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{16}{3}\\x=4\end{cases}}\)
PS: Điều kiện b tự làm rồi tự chọn nghiệm nhé