K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2023

1: \(2^x=64\)

=>\(x=log_264=6\)

2: \(2^x\cdot3^x\cdot5^x=7\)

=>\(\left(2\cdot3\cdot5\right)^x=7\)

=>\(30^x=7\)

=>\(x=log_{30}7\)

3: \(4^x+2\cdot2^x-3=0\)

=>\(\left(2^x\right)^2+2\cdot2^x-3=0\)

=>\(\left(2^x\right)^2+3\cdot2^x-2^x-3=0\)

=>\(\left(2^x+3\right)\left(2^x-1\right)=0\)

=>\(2^x-1=0\)

=>\(2^x=1\)

=>x=0

4: \(9^x-4\cdot3^x+3=0\)

=>\(\left(3^x\right)^2-4\cdot3^x+3=0\)

Đặt \(a=3^x\left(a>0\right)\)

Phương trình sẽ trở thành:

\(a^2-4a+3=0\)

=>(a-1)(a-3)=0

=>\(\left[{}\begin{matrix}a-1=0\\a-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=1\left(nhận\right)\\a=3\left(nhận\right)\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}3^x=1\\3^x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=0\end{matrix}\right.\)

5: \(3^{2\left(x+1\right)}+3^{x+1}=6\)

=>\(\left[3^{x+1}\right]^2+3^{x+1}-6=0\)

=>\(\left(3^{x+1}\right)^2+3\cdot3^{x+1}-2\cdot3^{x+1}-6=0\)

=>\(3^{x+1}\left(3^{x+1}+3\right)-2\left(3^{x+1}+3\right)=0\)

=>\(\left(3^{x+1}+3\right)\left(3^{x+1}-2\right)=0\)

=>\(3^{x+1}-2=0\)

=>\(3^{x+1}=2\)

=>\(x+1=log_32\)

=>\(x=-1+log_32\)

6: \(\left(2-\sqrt{3}\right)^x+\left(2+\sqrt{3}\right)^x=2\)
=>\(\left(\dfrac{1}{2+\sqrt{3}}\right)^x+\left(2+\sqrt{3}\right)^x=2\) 

=>\(\dfrac{1}{\left(2+\sqrt{3}\right)^x}+\left(2+\sqrt{3}\right)^x=2\)

Đặt \(b=\left(2+\sqrt{3}\right)^x\left(b>0\right)\)

Phương trình sẽ trở thành:

\(\dfrac{1}{b}+b=2\)

=>\(b^2+1=2b\)

=>\(b^2-2b+1=0\)

=>(b-1)2=0

=>b-1=0

=>b=1

=>\(\left(2+\sqrt{3}\right)^x=1\)

=>x=0

7: ĐKXĐ: \(x^2+3x>0\)

=>x(x+3)>0

=>\(\left[{}\begin{matrix}x>0\\x< -3\end{matrix}\right.\)
\(log_4\left(x^2+3x\right)=1\)

=>\(x^2+3x=4^1=4\)

=>\(x^2+3x-4=0\)

=>(x+4)(x-1)=0

=>\(\left[{}\begin{matrix}x+4=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\left(nhận\right)\\x=-4\left(nhận\right)\end{matrix}\right.\)

a:

ĐKXĐ: x+1>0 và x>0

=>x>0

=>\(log_2\left(x^2+x\right)=1\)

=>x^2+x=2

=>x^2+x-2=0

=>(x+2)(x-1)=0

=>x=1(nhận) hoặc x=-2(loại)

c: ĐKXĐ: x-1>0 và x-2>0

=>x>2

\(PT\Leftrightarrow log_2\left(x^2-3x+2\right)=3\)

=>\(\Leftrightarrow x^2-3x+2=8\)

=>x^2-3x-6=0

=>\(\left[{}\begin{matrix}x=\dfrac{3+\sqrt{33}}{2}\left(nhận\right)\\x=\dfrac{3-\sqrt{33}}{2}\left(loại\right)\end{matrix}\right.\)

NV
27 tháng 12 2021

\(\Leftrightarrow1+8^{\dfrac{x}{2}}=9^{\dfrac{x}{2}}\)

\(\Leftrightarrow\left(\dfrac{1}{9}\right)^{\dfrac{x}{2}}+\left(\dfrac{8}{9}\right)^{\dfrac{x}{2}}=1\)

\(\Leftrightarrow\left(\dfrac{1}{9}\right)^{\dfrac{x}{2}}+\left(\dfrac{8}{9}\right)^{\dfrac{x}{2}}-1=0\)

Nhận thấy \(\dfrac{x}{2}=1\Leftrightarrow x=2\) là 1 nghiệm của pt đã cho

Xét hàm \(f\left(x\right)=\left(\dfrac{1}{9}\right)^{\dfrac{x}{2}}+\left(\dfrac{8}{9}\right)^{\dfrac{x}{2}}-1\)

\(f'\left(x\right)=\dfrac{1}{2}.\left(\dfrac{1}{9}\right)^{\dfrac{x}{2}}.ln\left(\dfrac{1}{9}\right)+\dfrac{1}{2}\left(\dfrac{8}{9}\right)^{\dfrac{x}{2}}.ln\left(\dfrac{8}{9}\right)< 0\)

\(\Rightarrow f\left(x\right)\) nghịch biến trên R

\(\Rightarrow f\left(x\right)\) có tối đa 1 nghiệm

\(\Rightarrow x=2\) là nghiệm duy nhất của pt đã cho

NV
17 tháng 7 2021

ĐKXĐ: \(\left\{{}\begin{matrix}x\ne-\dfrac{\pi}{2}+k2\pi\\x\ne\dfrac{\pi}{6}+\dfrac{k2\pi}{3}\\\end{matrix}\right.\)

\(\dfrac{cosx-2sinx.cosx}{2cos^2x-1-sinx}=\sqrt{3}\)

\(\Leftrightarrow\dfrac{cosx-sin2x}{cos2x-sinx}=\sqrt{3}\)

\(\Rightarrow cosx-sin2x=\sqrt{3}cos2x-\sqrt{3}sinx\)

\(\Leftrightarrow cosx+\sqrt{3}sinx=\sqrt{3}cos2x+sin2x\)

\(\Leftrightarrow\dfrac{1}{2}cosx+\dfrac{\sqrt{3}}{2}sinx=\dfrac{\sqrt{3}}{2}cos2x+\dfrac{1}{2}sin2x\)

\(\Leftrightarrow cos\left(x-\dfrac{\pi}{3}\right)=cos\left(2x-\dfrac{\pi}{6}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{\pi}{6}=x-\dfrac{\pi}{3}+k2\pi\\2x-\dfrac{\pi}{6}=\dfrac{\pi}{3}-x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{6}+k2\pi\\x=\dfrac{\pi}{6}+\dfrac{k2\pi}{3}\left(loại\right)\end{matrix}\right.\)

Vậy \(x=-\dfrac{\pi}{6}+k2\pi\)

NV
3 tháng 4 2023

Đặt \(x+\dfrac{1}{x}=t\Rightarrow t^2=x^2+\dfrac{1}{x^2}+2\)

Pt trở thành:

\(7t+2\left(t^2-2\right)=5\Leftrightarrow2t^2+7t-9=0\)

\(\Rightarrow\left[{}\begin{matrix}t=1\\t=-\dfrac{9}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x+\dfrac{1}{x}=1\\x+\dfrac{1}{x}=-\dfrac{9}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^2-x+1=0\left(vô-nghiệm\right)\\x^2+\dfrac{9}{2}x+1=0\end{matrix}\right.\)

Theo hệ thức Viet: \(x_1x_2=\dfrac{c}{a}=1\)

23 tháng 5 2017

Hàm lũy thừa, mũ và loagrit