K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2020

a) ĐKXĐ: \(x\ne\pm4\)

\(5+\frac{96}{x^2-16}=\frac{2x-1}{x+4}-\frac{3x-1}{4-x}\)

<=> \(5+\frac{96}{\left(x-4\right)\left(x+4\right)}=\frac{2x-1}{x+4}-\frac{3x-1}{4-x}\)

<=> 5(x - 4)(x + 4) + 96(x - 4) = (2x - 1)(x - 4)(4 - x) - (3x - 1)(x + 4)(4 - x)

<=> 20x2 - 16x + 64 = 18x2 + 8x

<=> 20x2 - 16x + 64 - 18x2 - 8x = 0

<=> 2x2 - 24x + 64 = 0

<=> 2(x2 - 12x + 32) = 0

<=> 2(x - 8)(x - 4) = 0

<=> (x - 8)(x - 4) = 0

<=> x - 8 = 0 hoặc x - 4 = 0

<=> x = 8 (tm) hoặc x - 4 = 0 (ktm)

=> x = 8

b) ĐKXĐ: \(x\ne\pm\frac{2}{3}\)

\(\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x^2-4}\)

<=> \(\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x^2-2^2}\)

<=> \(\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{\left(3x-2\right)\left(3x+2\right)}\)

<=> (2 + 3x)2 - 6(3x - 2) = 9x2

<=> 16 - 6x + 9x2 = 9x2

<=> 16 - 6x + 9x2 - 9x= 0

<=> 16 - 6x = 0

<=> -6x = 0 - 16

<=> -6x = -16

<=> x = -16/-6 = 8/3

=> x = 8/3

20 tháng 3 2020

Bài 1.

\( a)\dfrac{{4x - 8}}{{2{x^2} + 1}} = 0 (x \in \mathbb{R})\\ \Leftrightarrow 4x - 8 = 0\\ \Leftrightarrow 4x = 8\\ \Leftrightarrow x = 2\left( {tm} \right)\\ b)\dfrac{{{x^2} - x - 6}}{{x - 3}} = 0\left( {x \ne 3} \right)\\ \Leftrightarrow \dfrac{{{x^2} + 2x - 3x - 6}}{{x - 3}} = 0\\ \Leftrightarrow \dfrac{{x\left( {x + 2} \right) - 3\left( {x + 2} \right)}}{{x - 3}} = 0\\ \Leftrightarrow \dfrac{{\left( {x + 2} \right)\left( {x - 3} \right)}}{{x - 3}} = 0\\ \Leftrightarrow x - 2 = 0\\ \Leftrightarrow x = 2\left( {tm} \right) \)

20 tháng 3 2020

Bài 2.

\(c)\dfrac{{x + 5}}{{3x - 6}} - \dfrac{1}{2} = \dfrac{{2x - 3}}{{2x - 4}}\)

ĐK: \(x\ne2\)

\( Pt \Leftrightarrow \dfrac{{x + 5}}{{3x - 6}} - \dfrac{{2x - 3}}{{2x - 4}} = \dfrac{1}{2}\\ \Leftrightarrow \dfrac{{x + 5}}{{3\left( {x - 2} \right)}} - \dfrac{{2x - 3}}{{2\left( {x - 2} \right)}} = \dfrac{1}{2}\\ \Leftrightarrow \dfrac{{2\left( {x + 5} \right) - 3\left( {2x - 3} \right)}}{{6\left( {x - 2} \right)}} = \dfrac{1}{2}\\ \Leftrightarrow \dfrac{{ - 4x + 19}}{{6\left( {x - 2} \right)}} = \dfrac{1}{2}\\ \Leftrightarrow 2\left( { - 4x + 19} \right) = 6\left( {x - 2} \right)\\ \Leftrightarrow - 8x + 38 = 6x - 12\\ \Leftrightarrow - 14x = - 50\\ \Leftrightarrow x = \dfrac{{27}}{5}\left( {tm} \right)\\ d)\dfrac{{12}}{{1 - 9{x^2}}} = \dfrac{{1 - 3x}}{{1 + 3x}} - \dfrac{{1 + 3x}}{{1 - 3x}} \)

ĐK: \(x \ne -\dfrac{1}{3};x \ne \dfrac{1}{3}\)

\( Pt \Leftrightarrow \dfrac{{12}}{{1 - 9{x^2}}} - \dfrac{{1 - 3x}}{{1 + 3x}} - \dfrac{{1 + 3x}}{{1 - 3x}} = 0\\ \Leftrightarrow \dfrac{{12}}{{\left( {1 - 3x} \right)\left( {1 + 3x} \right)}} - \dfrac{{1 - 3x}}{{1 + 3x}} - \dfrac{{1 + 3x}}{{1 - 3x}} = 0\\ \Leftrightarrow \dfrac{{12 - {{\left( {1 - 3x} \right)}^2} - {{\left( {1 + 3x} \right)}^2}}}{{\left( {1 - 3x} \right)\left( {1 + 3x} \right)}} = 0\\ \Leftrightarrow \dfrac{{12 + 12x}}{{\left( {1 - 3x} \right)\left( {1 + 3x} \right)}} = 0\\ \Leftrightarrow 12 + 12x = 0\\ \Leftrightarrow 12x = - 12\\ \Leftrightarrow x = - 1\left( {tm} \right) \)

20 tháng 3 2020

\(a.\frac{4x-8}{2x^2+1}=0\\ \Leftrightarrow4x-8=0\\ \Leftrightarrow4\left(x-2\right)=0\\ \Leftrightarrow x-2=0\\ \Leftrightarrow x=2\)

Vậy nghiệm của phương trình trên là \(2\)

20 tháng 3 2020

\(b.\frac{x^2-x-6}{x-3}=0\left(x\ne3\right)\\\Leftrightarrow x^2-x-6=0\\ \Leftrightarrow x^2+2x-3x-6=0\\\Leftrightarrow x\left(x+2\right)-3\left(x+2\right)=0\\\Leftrightarrow \left(x-3\right)\left(x+2\right)=0\\\Leftrightarrow \left[{}\begin{matrix}x-3=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\left(ktm\right)\\x=-2\left(tm\right)\end{matrix}\right.\)

Vậy nghiệm của phương trình trên là \(-2\)

8 tháng 2 2021

giúp mình với ạ câu nào cũng được

11 tháng 7 2019

â) \(\left(5-x\right)\left(2+3x\right)=4-9x^2\) 

   \(\left(5-x\right)\left(2+3x\right)=\left(2+3x\right)\left(2-3x\right)\)

   \(5-x=2-3x\) 

  \(2x=-3\) 

 \(x=\frac{-3}{2}\) 

Vậy ......

b) \(25-x^2=4x\left(5+x\right)\)

    \(\left(5+x\right)\left(5-x\right)=4x\left(5+x\right)\) 

   \(5-x=4x\) 

   \(5x=5\)

  x=1

Vậy......

11 tháng 7 2019

a) \(\left(5-x\right)\left(2+3x\right)=4-9x^2\)

<=> \(\left(5-x\right)\left(2+3x\right)+9x^2-4=0\)

<=> \(\left(5-x\right)\left(2+3x\right)+\left(3x-2\right)\left(3x+2\right)=0\)

<=> \(\left(2+3x\right)\left(3x-2+5-x\right)=0\)

<=> \(\left(2+3x\right)\left(2x+3\right)=0\)

<=> \(\orbr{\begin{cases}2x+3=0\\3x+2=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-\frac{3}{2}\\x=-\frac{2}{3}\end{cases}}\)

b) \(25-x^2=4x\left(5+x\right)\)

<=> \(25-x^2-4x\left(5+x\right)=0\)

<=> \(\left(5-x\right)\left(5+x\right)-4x\left(5+x\right)=0\)

<=> \(\left(5+x\right)\left(5-x-4x\right)=0\)

<=> \(\left(5+x\right)\left(5-5x\right)=0\)

<=> \(\orbr{\begin{cases}5+x=0\\5-5x=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-5\\x=1\end{cases}}\)

1) ĐKXĐ: \(x\notin\left\{2;-2\right\}\)

Ta có: \(\dfrac{1-6x}{x-2}+\dfrac{9x+4}{x+2}=\dfrac{x\left(3x-2\right)+1}{x^2-4}\)

\(\Leftrightarrow\dfrac{\left(1-6x\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{\left(9x+4\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{3x^2-2x+1}{\left(x-2\right)\left(x+2\right)}\)

Suy ra: \(\left(1-6x\right)\left(x+2\right)+\left(9x+4\right)\left(x-2\right)=3x^2-2x+1\)

\(\Leftrightarrow x+2-6x^2-12x+9x^2-18x+4x-8-3x^2+2x-1=0\)

\(\Leftrightarrow-23x-7=0\)

\(\Leftrightarrow-23x=7\)

\(\Leftrightarrow x=-\dfrac{7}{23}\)(nhận)

Vậy: \(S=\left\{-\dfrac{7}{23}\right\}\)

2) ĐKXĐ: \(x\notin\left\{\dfrac{2}{3};-\dfrac{2}{3}\right\}\)

Ta có: \(\dfrac{3x+2}{3x-2}-\dfrac{6}{2-3x}=\dfrac{9x^2}{9x^2-4}\)

\(\Leftrightarrow\dfrac{3x+2}{3x-2}+\dfrac{6}{3x-2}=\dfrac{9x^2}{\left(3x-2\right)\left(3x+2\right)}\)

\(\Leftrightarrow\dfrac{3x+8}{3x-2}=\dfrac{9x^2}{\left(3x-2\right)\left(3x+2\right)}\)

\(\Leftrightarrow\dfrac{\left(3x+8\right)\left(3x+2\right)}{\left(3x-2\right)\left(3x+2\right)}=\dfrac{9x^2}{\left(3x-2\right)\left(3x+2\right)}\)

Suy ra: \(9x^2+6x+24x+16=9x^2\)

\(\Leftrightarrow30x+16=0\)

\(\Leftrightarrow30x=-16\)

hay \(x=-\dfrac{8}{15}\)(nhận)

Vậy: \(S=\left\{-\dfrac{8}{15}\right\}\)

 

7 tháng 3 2021

\(\frac{1-x}{1+x}+3=\frac{2x+3}{x+1}\left(ĐKXĐ:x\ne-1\right)\)

\(\Leftrightarrow\frac{1-x}{x+1}+\frac{3\left(x+1\right)}{x+1}=\frac{2x+3}{x+1}\)

\(\Leftrightarrow\frac{1-x+3\left(x+1\right)}{x+1}=\frac{2x+3}{x+1}\)

\(\Rightarrow1-x+3\left(x+1\right)=2x+3\)

\(\Leftrightarrow1-x+3x+3=2x+3\)

\(\Leftrightarrow2x+4=2x+3\)

\(\Leftrightarrow0x=-1\)(vô nghiệm)

Vậy phương trình vô nghiệm.

7 tháng 3 2021

\(\frac{\left(x+2\right)^2}{2x-3}-1=\frac{x^2-10}{2x-3}\left(ĐKXĐ:x\ne\frac{3}{2}\right)\)

\(\Leftrightarrow\frac{x^2+4x+4}{2x-3}-\frac{2x-3}{2x-3}=\frac{x^2-10}{2x-3}\)

\(\Leftrightarrow\frac{x^2+4x+4-2x+3}{2x-3}=\frac{x^2-10}{2x-3}\)

\(\Rightarrow x^2+4x+4-2x+3=x^2-10\)

\(\Leftrightarrow2x+7=-10\)

\(\Leftrightarrow2x=-17\)

\(\Leftrightarrow x=\frac{-17}{2}\)(thỏa mãn ĐKXĐ)

Vậy phương trình có nghiệm duy nhất : \(x=\frac{-17}{2}\)