Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(u=\sqrt{10-x};v=\sqrt{3+x}\)
Phương trình trở thành \(u+v+2uv=17\)
\(\Rightarrow u+v=\sqrt{17}\)
đến đây thì EZ rồi
b)\(\frac{1}{x+\sqrt{x^2+x}}+\frac{1}{x-\sqrt{x^2+x}}=x\)
\(\Leftrightarrow\frac{x-\sqrt{x^2+x}}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}+\frac{x+\sqrt{x^2+x}}{\left(x-\sqrt{x^2+x}\right)\left(x+\sqrt{x^2+x}\right)}-\frac{x\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}=0\)
\(\Leftrightarrow\frac{x-\sqrt{x^2+x}+x+\sqrt{x^2+x}-x^2}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}=0\)
\(\Leftrightarrow\frac{-x^2+2x}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}=0\)
\(\Leftrightarrow\frac{-x\left(x+2\right)}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}=0\)
Dễ thấy: x=0 ko là nghiệm nên \(x+2=0\Rightarrow x=-2\)
c)\(\sqrt{2x+4}-2\sqrt{2-x}=\frac{12x-8}{\sqrt{9x^2+16}}\)
\(\Leftrightarrow\frac{\left(2x+4\right)-4\left(2-x\right)}{\sqrt{2x+4}+2\sqrt{2-x}}=\frac{4\left(3x-2\right)}{\sqrt{9x^2+16}}\)
\(\Leftrightarrow\frac{2\left(3x-2\right)}{\sqrt{2x+4}+2\sqrt{2-x}}=\frac{4\left(3x-2\right)}{\sqrt{9x^2+16}}\)
\(\Leftrightarrow\frac{2\left(3x-2\right)}{\sqrt{2x+4}+2\sqrt{2-x}}-\frac{4\left(3x-2\right)}{\sqrt{9x^2+16}}=0\)
\(\Leftrightarrow\left(3x-2\right)\left(\frac{2}{\sqrt{2x+4}+2\sqrt{2-x}}-\frac{4}{\sqrt{9x^2+16}}\right)=0\)
\(\Leftrightarrow x=\frac{2}{3}\)
a,x4-10x2+9=0
=>(x-1)(x3+x2-9x-9)=0
=> (x-1)(x+1)(x-3)(x+3)=0
=>\(\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}}\)hoặc\(\orbr{\begin{cases}x-3=0\\x+3=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=\pm1\\x=\pm3\end{cases}}\)
Vậy tập nghiệm cuả pt là S={\(\pm1,\pm3\)}
f) ĐKXĐ: \(x\ge-\frac{3}{2}\)
Khi đó VT > 0 nên \(VT>0\Rightarrow\left[{}\begin{matrix}x\ge2\\x\le-3\left(L\right)\end{matrix}\right.\)
Lũy thừa 6 cả 2 vế lên PT tương đương:
\( \left( x-3 \right) \left( {x}^{11}+9\,{x}^{10}+6\,{x}^{9}-142\,{x}^{ 8}-231\,{x}^{7}+1113\,{x}^{6}+2080\,{x}^{5}-4604\,{x}^{4}-6908\,{x}^{3 }+13222\,{x}^{2}+10983\,x-15327 \right) =0\)
Cái ngoặc to vô nghiệm vì nó tương đương:
\(\left( x-2 \right) ^{11}+31\, \left( x-2 \right) ^{10}+406\, \left( x -2 \right) ^{9}+2906\, \left( x-2 \right) ^{8}+12281\, \left( x-2 \right) ^{7}+31031\, \left( x-2 \right) ^{6}+46656\, \left( x-2 \right) ^{5}+46648\, \left( x-2 \right) ^{4}+46452\, \left( x-2 \right) ^{3}+44590\, \left( x-2 \right) ^{2}+36015\,x-55223 = 0\)(vô nghiệm với mọi \(x\ge2\))
Vậy x = 3.
PS: Nghiệm đẹp thế này chắc có cách AM-Gm độc đáo nhưng mình chưa nghĩ ra
@Akai Haruma, @Nguyễn Việt Lâm
giúp em vs ạ! Cần gấp ạ
em cảm ơn nhiều!
a/
\(\Leftrightarrow2\left(x^2-x+1\right)-\left(x^2+x+1\right)=-\frac{\sqrt{3}}{3}\sqrt{\left(x^2-x+1\right)\left(x^2+x+1\right)}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-x+1}=a>0\\\sqrt{x^2+x+1}=b>0\end{matrix}\right.\)
\(\Leftrightarrow6a^2+\sqrt{3}ab-3b^2=0\)
\(\Leftrightarrow\left(3a-\sqrt{3}b\right)\left(2a+\sqrt{3}b\right)=0\)
\(\Leftrightarrow3a-\sqrt{3}b=0\Rightarrow b=\sqrt{3}a\)
\(\Leftrightarrow\sqrt{x^2+x+1}=\sqrt{3}\sqrt{x^2-x+1}\)
\(\Leftrightarrow x^2+x+1=3x^2-3x+3\)
b/ ĐKXĐ: ...
Đặt \(\left\{{}\begin{matrix}x+3=a\\\sqrt{\left(4-x\right)\left(12+x\right)}=b\end{matrix}\right.\)
\(\Rightarrow a^2+b^2=x^2+6x+9+48-8x-x^2=57-2x=2\left(28-x\right)+1\)
\(\Rightarrow28-x=\frac{a^2+b^2-1}{2}\)
Phương trình trở thành:
\(ab=\frac{a^2+b^2-1}{2}\Leftrightarrow\left(a-b\right)^2=1\Leftrightarrow\left[{}\begin{matrix}a+1=b\\a-1=b\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=\sqrt{\left(4-x\right)\left(12+x\right)}\\x+2=\sqrt{\left(4-x\right)\left(12+x\right)}\end{matrix}\right.\) \(\Leftrightarrow...\)
c/ ĐKXĐ: ...
\(\sqrt{x\left(x^2-1\right)}=2\left(x^2-1\right)-x\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\ge0\\\sqrt{x^2-1}=b\ge0\end{matrix}\right.\)
\(ab=2a^2-b^2\Leftrightarrow2a^2-ab-b^2=0\)
\(\Leftrightarrow\left(a-b\right)\left(2a+b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a-b=0\\2a+b=0\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow a=b\Leftrightarrow\sqrt{x}=\sqrt{x^2-1}\)
\(\Leftrightarrow x^2-x-1=0\)
d/ Là \(2x^2+5\) hay \(2x+5\) bạn?
\(\Leftrightarrow x-16+\sqrt{x-15}-1=0\)0
\(\Leftrightarrow x-16+\frac{x-16}{\sqrt{x-15}+1}\)= 0
\(\Leftrightarrow\left(x-16\right)\cdot\left(1+\frac{1}{\sqrt{x-15}+1}\right)\)=0
b)\(\Leftrightarrow\left(x^2-5\cdot x+4\right)\cdot\left(x^2-5\cdot x+6_{ }\right)=0\)
Đật T=\(x^2-5\cdot x+4\)
C) dat T= \(x^2+x+1\)