K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2017

xin loi 

minh chang hieu cai gi ca

nho k minh nha

minh k lai cho

1 tháng 3 2017

minh chang hieu gi ca

a=28

b=36

25 tháng 3 2020

tìm ra đáp án chưa

25 tháng 3 2020

Đc rồi chỉ mình với

20 tháng 3 2020

https://hoc24.vn/hoi-dap/question/177629.html (câu 2)

https://hoc24.vn/hoi-dap/question/940816.html?pos=2486212 (câu 1)
11 tháng 7 2019

Ta có: \(\hept{\begin{cases}xy+x+y=1\\yz+y+z=3\\xz+x+z=7\end{cases}}\Rightarrow\hept{\begin{cases}xy+x+y+1=2\\yz+y+z+1=4\\xz+x+z+1=8\end{cases}}\Rightarrow\hept{\begin{cases}\left(x+1\right)\left(y+1\right)=2\\\left(y+1\right)\left(z+1\right)=4\\\left(x+z\right)\left(z+1\right)=8\end{cases}}\)

Nhân theo vế: 

\(\left[\left(x+1\right)\left(y+1\right)\left(z+1\right)\right]^2=64\Rightarrow\orbr{\begin{cases}\left(x+1\right)\left(y+1\right)\left(z+1\right)=8\\\left(x+1\right)\left(y+1\right)\left(z+1\right)=-8\end{cases}}\)

Thay vào từng trường hợp tìm x;y;z

AH
Akai Haruma
Giáo viên
14 tháng 5 2021

Lời giải:

Vì $|x+4|, |x+5|\geq 0$ với mọi $x\in\mathbb{R}$ nên:

$2x=|x+4|+|x+5|\geq 0$

$\Rightarrow x\geq 0$

$\Rightarrow |x+4|=x+4; |x+5|=x+5$. Do đó, pt trở thành:

$x+4+x+5=2x$

$\Leftrightarrow 0=9$ (vô lý)

Vậy pt vô nghiệm.

b)

Ta có: 

$2x=|x+4|+|x+5|+...+|x+10|\geq 0$

$\Rightarrow x\geq 0$

$\Rightarrow |x+4|=x+4; |x+5|=x+5; ....;|x+10|=x+10$

Do đó pt trở thành:

$2x=(x+4)+(x+5)+...+(x+10)$

$2x=7x+49$

$x=\frac{-49}{5}<0$ (vô lý vì $x\geq 0$)

Vậy PT vô nghiệm.

18 tháng 1 2022

\(\text{2x - (x - 3)(5 - x) = (x+4)}^2.\)

\(\Leftrightarrow2x-\left(5x-x^2-15+3x\right)=x^2+8x+16.\)

\(\Leftrightarrow2x-5x+x^2+15-3x-x^2-8x-16=0.\)

\(\Leftrightarrow-14x-1=0.\Leftrightarrow x=\dfrac{-1}{14}.\)

\(\text{(4x + 1)(x - 2) + 25 = (2x+3)}^2-4x.\)

\(\Leftrightarrow4x^2-8x+x-2+25=4x^2+12x+9-4x.\)

\(\Leftrightarrow-15x+14=0.\Leftrightarrow x=\dfrac{14}{15}.\)

9 tháng 5 2021

a. \(\dfrac{-3}{x^2-9}+\dfrac{5}{3-x}=\dfrac{2}{x+3}\)

<=> \(\dfrac{-3}{x^2-9}+\dfrac{-5}{x-3}=\dfrac{2}{x+3}\)

<=> \(\dfrac{-3}{x^2-9}+\dfrac{-5\left(x+3\right)}{x^2-9}=\dfrac{2\left(x-3\right)}{x^2-9}\)

<=> \(-3+\left(-5\right)\left(x+3\right)=2\left(x-3\right)\)

<=> -3 + (-5x) + (-15) = 2x - 6

<=> -5x -2x = 15 - 6 + 3

<=> -7x = 12

<=> x = \(\dfrac{-12}{7}\)

Vậy ........

b. \(\left|x+5\right|=2x-1\)

Nếu x \(\ge\) -5 => \(\left|x+5\right|\) = x + 5

Nếu x < -5 => \(\left|x+5\right|\) = -(x + 5)

TH1: Nếu x \(\ge\) -5

<=> x + 5 = 2x - 1

<=> x - 2x = -1 - 5

<=> -x = -6 

<=> x = 6

TH2: Nếu x < -5 

<=> -(x + 5) = 2x - 1

<=> -x - 5 = 2x - 1

<=> -5 + 1 = 2x + x

<=> -4 = 3x

<=> x = \(\dfrac{-4}{3}\)

Vậy .........

c. Bạn tự giải câu này nhé (có thể tách các hạng tử rồi tính)

9 tháng 5 2021

bạn giải giúp mk câu C đi mk hok ko giỏi toán khocroi

30 tháng 7 2018

e) = \(\dfrac{3}{2\left(x+3\right)}\) - \(\dfrac{x-6}{2x\left(x+3\right)}\)

= \(\dfrac{3x}{2x\left(x+3\right)}\) - \(\dfrac{x-6}{2x\left(x+3\right)}\) = \(\dfrac{3x-x+6}{2x\left(x+3\right)}\)

= \(\dfrac{2x-6}{2x\left(x+3\right)}\)

= \(\dfrac{2\left(x-3\right)}{2x\left(x+3\right)}\)

30 tháng 7 2018

c) = \(\dfrac{2\left(a^3-b^3\right)}{3\left(a+b\right)}\) . \(\dfrac{6\left(a+b\right)}{a^2-2ab+b^2}\)

= \(\dfrac{-2\left(a+b\right)\left(a^2-2ab+b^2\right)}{3\left(a+b\right)}\) . \(\dfrac{6\left(a+b\right)}{a^2-2ab+b^2}\)

= \(\dfrac{-2\left(a+b\right)}{1}\) . \(\dfrac{2}{1}\) = -4 (a+b)

9 tháng 6 2021

a) \(2\chi-3=3\left(\chi+1\right)\)

\(\Leftrightarrow2\chi-3=3\chi+3\)

\(\Leftrightarrow2\chi-3\chi=3+3\)

\(\Leftrightarrow\chi=-6\)

Vậy phương trình có tập nghiệm S= \(\left\{-6\right\}\)

\(3\chi-3=2\left(\chi+1\right)\)

\(\Leftrightarrow3\chi-3=2\chi+2\)

\(\Leftrightarrow3\chi-2\chi=2+3\)

\(\Leftrightarrow\chi=5\)

Vậy phương trình có tập nghiệm S= \(\left\{5\right\}\)

b) \(\left(3\chi+2\right)\left(4\chi-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3\chi+2=0\\4\chi-5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3\chi=-2\\4\chi=5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\chi=\dfrac{-2}{3}\\\chi=\dfrac{5}{4}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm S= \(\left\{\dfrac{-2}{3};\dfrac{5}{4}\right\}\)

\(\left(3\chi+5\right)\left(4\chi-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3\chi+5=0\\4\chi-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3\chi=-5\\4\chi=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\chi=\dfrac{-5}{3}\\\chi=\dfrac{1}{2}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm S= \(\left\{\dfrac{-5}{3};\dfrac{1}{2}\right\}\)

c) \(\left|\chi-7\right|=2\chi+3\)

Trường hợp 1: 

Nếu \(\chi-7\ge0\Leftrightarrow\chi\ge7\)

Khi đó:\(\left|\chi-7\right|=2\chi+3\)

 \(\Leftrightarrow\chi-7=2\chi+3\)

\(\Leftrightarrow\chi-2\chi=3+7\)

\(\Leftrightarrow\chi=-10\) (KTMĐK)

Trường hợp 2:

Nếu \(\chi-7\le0\Leftrightarrow\chi\le7\)

Khi đó: \(\left|\chi-7\right|=2\chi+3\)

\(\Leftrightarrow-\chi+7=2\chi+3\)

\(\Leftrightarrow-\chi-2\chi=3-7\)

\(\Leftrightarrow-3\chi=-4\)

\(\Leftrightarrow\chi=\dfrac{4}{3}\)(TMĐK)

Vậy phương trình có tập nghiệm S=\(\left\{\dfrac{4}{3}\right\}\)

\(\left|\chi-4\right|=5-3\chi\)

Trường hợp 1:  

Nếu \(\chi-4\ge0\Leftrightarrow\chi\ge4\)

Khi đó: \(\left|\chi-4\right|=5-3\chi\)

\(\Leftrightarrow\chi-4=5-3\chi\)

\(\Leftrightarrow\chi+3\chi=5+4\)

\(\Leftrightarrow4\chi=9\)

\(\Leftrightarrow\chi=\dfrac{9}{4}\)(KTMĐK)

Trường hợp 2: Nếu \(\chi-4\le0\Leftrightarrow\chi\le4\)

Khi đó: \(\left|\chi-4\right|=5-3\chi\)

\(\Leftrightarrow-\chi+4=5-3\chi\)

\(\Leftrightarrow-\chi+3\chi=5-4\)

\(\Leftrightarrow2\chi=1\)

\(\Leftrightarrow\chi=\dfrac{1}{2}\)(TMĐK)

Vậy phương trình có tập nghiệm S=\(\left\{\dfrac{1}{2}\right\}\)