K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2019

Ta có: |x + 6| = x + 6 khi x + 6 ≥ 0

⇔ x  ≥  -6

|x + 6| = -x – 6 khi x + 6 < 0

⇔ x < -6

Ta có: x + 6 = 2x + 9

⇔ x – 2x = 9 – 6

⇔ -x = 3

⇔ x = -3

Giá trị x = -3 thoả mãn điều kiện x  ≥ -6 nên -3 là nghiệm của phương trình.

-x – 6 = 2x + 9

⇔ -x – 2x = 9 + 6

⇔ -3x = 15

⇔ x = -5

Giá trị x = -5 không thỏa mãn điều kiện x < -6 nên loại.

Vậy tập nghiệm của phương trình: S = {-3}

23 tháng 4 2019

a)|x+6|>=0 => 2x>=0 => x>=0 => x+6>=6>0 => |x+6|=x+6

=> x+6=2x=> x=6(thỏa mãn)

b)tương tự có được x=-3(thỏa mãn)

23 tháng 4 2019

a) \(|9+x|=2x\)

\(\Leftrightarrow\orbr{\begin{cases}9+x=2x\\9+x=-2x\end{cases}\Leftrightarrow\orbr{\begin{cases}9=2x-x\\9=-2x+x\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=9\\x=-9\end{cases}}}\)

b) \(|x+6|=2x+9\)

\(\Leftrightarrow\orbr{\begin{cases}x+6=2x+9\\x+6=-2x-9\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x-2x=9-6\\x+2x=-9-6\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}-x=3\\3x=-15\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=-5\end{cases}}}\)

24 tháng 8 2020

a) đk: \(x\ge1\)

 \(x-2\sqrt{x-1}=16\)

\(\Leftrightarrow\left(x-1\right)-2\sqrt{x-1}+1=16\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2=16\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-1}-1=4\\\sqrt{x-1}-1=-4\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-1}=5\\\sqrt{x-1}=-3\left(vl\right)\end{cases}\Rightarrow}x-1=25\Rightarrow x=26\)

24 tháng 8 2020

b) đk: \(x\ge\frac{9}{2}\)

 \(x-\sqrt{2x-9}=6\)

\(\Leftrightarrow x-6=\sqrt{2x-9}\)

\(\Leftrightarrow\left(x-6\right)^2=\left|2x-9\right|\)

\(\Leftrightarrow\orbr{\begin{cases}2x-9=\left(x-6\right)^2\\2x-9=-\left(x-6\right)^2\end{cases}}\)

+ Nếu: \(2x-9=\left(x-6\right)^2\)

\(\Leftrightarrow x^2-14x+45=0\)

\(\Leftrightarrow\left(x-5\right)\left(x-9\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=5\\x=9\end{cases}}\), thử lại thấy chỉ có x = 9 thỏa mãn

+ Nếu: \(2x-9=-\left(x-6\right)^2\)

\(\Leftrightarrow x^2-10x+27=0\)

\(\Leftrightarrow\left(x-5\right)^2=-2\) (vô lý)

Vậy x = 9

13 tháng 5 2021

a, TH1: 9+x=2x
      => x-2x=-9
     => -x=-9
     => x=9
TH2: 9+x=-2x
  => x+2x=-9
  => 3x=-9
  =>x=-3
b, TH1: x-1=3x+2
       =>x-3x=2+1
       => -2x=3
      => x=-3/2
 TH2: x-1=-3x-2
    => x+3x=-2+1
   => 4x=-1
    => x=-1/4
c, TH1: x+6=2x+9
     => x-2x=9-6
    => -x=3
   => x=-3
TH2: X+6=-2x-9
    => x+2x=-9-6
    =>3x=-15
    =>x=-5
d, TH1: 7-x=5x+1
       => -x-5x=1-7
      => -6x=-6
      => x=1
TH2: 7-X=-5x-1
     => -x+5x=-1-7
    => 4x=-8
    => x=-2
 

10 tháng 3 2019

Đặt \(y=x^2-2x+3=\left(x-1\right)^2+2\ge2\), ta có:

\(x^2-2x+3=\frac{6}{x^2-2x+4}\Leftrightarrow y=\frac{6}{y+1}\Leftrightarrow y\left(y+1\right)=6\Leftrightarrow y^2+y-6=0\)

\(\Leftrightarrow\left(y+3\right)\left(y-2\right)=0\Leftrightarrow\orbr{\begin{cases}y=2\\y=-3\end{cases}\Rightarrow y=2\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1}\)

Vậy \(S=\left\{1\right\}\)

a: \(x< -9:\dfrac{3}{2}=-9\cdot\dfrac{2}{3}=-6\)

b: 2/3x>-2

hay x>-2:2/3=-3

c: \(2x>\dfrac{9}{5}-\dfrac{4}{5}=1\)

hay x>1/2

d: \(\Leftrightarrow x\cdot\dfrac{3}{5}>6-4=2\)

hay x>2:3/5=2x5/3=10/3

20 tháng 9 2020

1) \(\frac{x-1}{x+3}-\frac{x}{x-3}=\frac{4x+15}{9-x^2}\)

ĐKXĐ : \(x\ne\pm3\)

\(\Leftrightarrow\frac{x-1}{x+3}-\frac{x}{x-3}=\frac{-4x-15}{x^2-9}\)

\(\Leftrightarrow\frac{\left(x-1\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{-4x-15}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow\frac{x^2-4x+3}{\left(x-3\right)\left(x+3\right)}-\frac{x^2+3x}{\left(x-3\right)\left(x+3\right)}=\frac{-4x-15}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow\frac{x^2-4x+3-x^2-3x}{\left(x-3\right)\left(x+3\right)}=\frac{-4x-15}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow-7x+3=-4x-15\)

\(\Leftrightarrow-7x+4x=-15-3\)

\(\Leftrightarrow-3x=-18\)

\(\Leftrightarrow x=6\)( tmđk )

Vậy x = 6 là nghiệm của phương trình

2) 2x + 3 < 6 - ( 3 - 4x )

<=> 2x + 3 < 6 - 3 + 4x

<=> 2x - 4x < 6 - 3 - 3

<=> -2x < 0

<=> x > 0

Vậy nghiệm của bất phương trình là x > 0

8 tháng 5 2017

Cái bài đầu giải BPT bn ghi cái dj ak ,mik cx k hỉu nữa

V mik giải bài 2 nghen, sửa lại đề bài đầu rồi mik giải cho

\(3x-3=|2x+1|\)

Điều kiện: \(3x-3\ge0\Leftrightarrow3x\ge3\Leftrightarrow x\ge1\)

\(\Leftrightarrow\orbr{\begin{cases}2x+1=3x-3\\2x+1=-3x+3\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2x-3x=-1-3\\2x+3x=-1+3\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}-x=-3\\5x=2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\left(n\right)\\x=\frac{2}{5}\left(l\right)\end{cases}}}\)

Vậy S={3}

Cài đề câu b ,bn xem lại nhé!

8 tháng 5 2017

\(\frac{2x-3}{35}+\frac{x\left(x-2\right)}{7}>\frac{x^2}{7}-\frac{2x-3}{5}\)

\(\Leftrightarrow\frac{2x-3}{35}+\frac{5x\left(x-2\right)}{35}-\frac{5x^2}{35}+\frac{7\left(2x-3\right)}{35}>0\)

\(\Leftrightarrow2x-3+5x\left(x-2\right)-5x^2+7\left(2x-3\right)>0\)

\(\Leftrightarrow2x-3+5x^2-10x-5x^2+14x-21>0\)

\(\Leftrightarrow6x-24>0\)

\(\Leftrightarrow x>4\)

VẬY TẬP NGHIỆM CỦA BẤT PHƯƠNG TRÌNH LÀ :  S = {  \(x\text{\x}>4\)}

\(\frac{6x+1}{18}+\frac{x+3}{12}\le\frac{5x+3}{6}+\frac{12-5x}{9}\)

\(\Leftrightarrow\frac{6\left(6x+1\right)}{108}+\frac{9\left(x+3\right)}{108}\le\frac{18\left(5x+3\right)}{108}+\frac{12\left(12-5x\right)}{108}\)

\(\Leftrightarrow36x+6+9x+27\le90x+54+144-60x\)

\(\Leftrightarrow36x+6+9x+27-90x-54-144+60x\le0\)

\(\Leftrightarrow15x-165\le0\)

\(\Leftrightarrow x\le11\)

VẬY TẬP NGHIỆM CỦA BẤT PHƯƠNG trình ..........

tk mk nka !!! chúc bạn học tốt !!!

13 tháng 6 2020

phần b là trị tuyệt đối đấy

13 tháng 6 2020

a, Đkxđ: x ≠ 1

\(\frac{3}{x-1}+1=\frac{2x+5}{x-1}\) \(\Leftrightarrow\frac{3+x-1}{x-1}=\frac{2x+5}{x-1}\)\(\Rightarrow3+x-1=2x+5\)\(\Leftrightarrow x-2x=5-3+1\)

\(\Leftrightarrow-x=3\)\(\Leftrightarrow x=-3\)

Vậy...

b, Đkxđ: 2x - 3 ≥ 0 => 2x ≥ 3 => x ≥ 1,5

\(\left|x-9\right|=2x-3\)\(\Rightarrow\orbr{\begin{cases}x-9=2x-3\\x-9=3-2x\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x-2x=-3+9\\x+2x=3+9\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}-x=6\\3x=12\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=-6\left(vo\text{^}ly'\right)\\x=4\end{cases}}\)

Vậy...