K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2017

Ta có: x + 5 2  +  x - 2 2  + (x +7)(x -7) = 12x -23

⇔  x 2 + 10x + 25 + x 2 - 4x +4 + x 2  -49 = 12x -23

⇔  x 2 +10x+25 +  x 2 -4x +4 +  x 2  -49 -12x +23 =0

⇔ 3 x 2  -6x + 3 =0

⇔  x 2  -2x +1 =0

∆ ’ =  - 1 2 -1.1 = 1-1 =0

 

 

Vậy phương trình đã cho có nghiệm kép: x 1  =  x 2  =1

21 tháng 6 2017

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

20 tháng 9 2016

câu d tách hđt r đánh giá . VP=(x-6)^2+2>=2 còn VP <=2 =>....
câu c tương tự 
câu b c bình phương oặc đặt ẩn :3

23 tháng 8 2017

a) \(\sqrt{7-x}+\sqrt{x-5}=x^2-12x+38\)

ĐKXĐ : \(5\le x\le7\)

Bình phương vế trái ta được:

\(VT^2=7-x+x-5+2\sqrt{\left(7-x\right)\left(x-5\right)}\)

       \(=2+2\sqrt{-x^2+12x-35}\)

       \(=2+2\sqrt{1-\left(x^2-12x+36\right)}\)

       \(=2+2\sqrt{1-\left(x-6\right)^2}\le2+2.1=4\)

 => \(VT\le2\) \(\left(VT\ge0\right)\)  (1)

\(VP=x^2-12x+38=\left(x^2-12x+36\right)+2=\left(x-6\right)^2+2\ge2\)  (2)

Từ (1) và (2) suy ra VT=VP=2

=> x=6 (thỏa mãn ĐKXĐ)

Vậy ... 

23 tháng 8 2017

b)\(\sqrt{x-1}+\sqrt{x+3}+2\sqrt{x^2+2x-3}=4-2x\)

ĐKXĐ : \(x\ge1\)

Với ĐKXĐ ta luôn có: \(VT=\sqrt{x-1}+\sqrt{x+3}+2\sqrt{\left(x-1\right)\left(x+3\right)}\ge\sqrt{4}=2\) (1)

\(VP=4-2x=2\left(2-x\right)\le2\) (2)

Từ (1) và (2) suy ra VT = VP = 2

=> x=1 ( Thỏa mãn ĐKXĐ )

Vậy ...

23 tháng 6 2017

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

21 tháng 8 2019

a) \(\sqrt{x+1}=x^2+4x+5\Leftrightarrow\left(x^2+4x+5\right)^2-\left(\sqrt{x+1}\right)^2=0\)

\(=x^4+8x^3+26x^2+39x+24\)

\(=\left(x^4+5x^3+8x^2\right)+\left(3x^3+15x^2+24x\right)+\left(3x^2+15x+24\right)\)

\(=x^2\left(x^2+5x+8\right)+3x\left(x^2+5x+8\right)+3\left(x^2+5x+8\right)\)

\(=\left(x^2+3x+3\right)\left(x^2+5x+8\right)=0\)

Xét hai TH

\(x^2+3x+3=0\)

\(\Rightarrow x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}=\frac{-3\pm\sqrt{9-12}}{2}\)

\(\Rightarrow\hept{\begin{cases}x_1=\frac{-3+\sqrt{3}i}{2}\\x_2=\frac{-\sqrt{3}i+3}{2}\end{cases}}\)

Tương tự với TH còn lại tính được hai nghiệm x3 và x4

21 tháng 8 2019

b) Xét VT

\(2\sqrt{x^3-3x+2}=2\sqrt{x^3-1-3x+3}=2\sqrt{\left(x-1\right)^2\left(x+2\right)}\)

\(=2\left(x-1\right)\sqrt{x+2}\)

Xét VP 

\(3\sqrt{x^3+8}=3\sqrt{x+2}\sqrt{x^2-2x+4}\)

\(\Rightarrow2\left(x-1\right)\sqrt{x+2}=3\sqrt{x+2}\sqrt{x^2-2x+4}\)

\(\Leftrightarrow2\left(x-1\right)=3\sqrt{x^2-2x+4}\)

\(\Leftrightarrow\frac{2}{3}=\frac{\sqrt{x^2-2x+4}}{x-1}\)

Bình phương hai vế ta được

\(\Leftrightarrow\frac{4}{9}=\frac{x^2-2x+4}{x^2-2x+1}\)

\(\Rightarrow4\left(x^2-2x+1\right)=9\left(x^2-2x+4\right)\)

\(\Rightarrow4x^2-8x+4=9x^2-18x+36\)

\(\Rightarrow4x^2-8x+4-9x^2+18x-36=4x^2-9x^2+4-36-8x+18x=0\)

\(\Rightarrow-5x^2-32+10x=0\)

Giải phương trình bậc hai ra được hai nghiệm 

\(x_1=1-\frac{3\sqrt{15}i}{5}\)

\(x_2=1+\frac{3\sqrt{15}i}{3}\)

P/s hình như mình giải sai chỗ nào nên nó thiếu nghiệm thì phải.Lên Cymath bấm nó còn một nghiệm x=-2 nữa nhưng ko biết cách làm

16 tháng 7 2019

\(a,\sqrt{4x^2-20x+25}+2x=5\)

    \(\Rightarrow\sqrt{\left(2x-5\right)^2}+2x=5\)

  \(\Rightarrow4x=10\Rightarrow x=\frac{5}{2}\)

\(b,\sqrt{1-12x+36x^2}=5\)

  \(\Rightarrow6x-1=5\)

 \(\Rightarrow6x=6\Rightarrow x=1\) 

\(c,\sqrt{x^2+x}=x\)

  \(\Rightarrow x^2+x=x^2\)

\(\Rightarrow x=0\)   

16 tháng 7 2019

\(c,\Rightarrow\left(x-2\right)^2-1=\left(x-2\right)^2\)

\(\Rightarrow-1=0\) (vô lý)

=> PT vô nghiệm 

13 tháng 7 2017

b) đặt \(\sqrt{3x+1}=a\)(\(a\ge0\))

\(PT\Leftrightarrow\dfrac{a^2-1}{\sqrt{a^2+9}}+1=a\)

\(\Leftrightarrow\left(a-1\right)\left(1-\dfrac{a+1}{\sqrt{a^2+9}}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a+1=\sqrt{a^2+9}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a=4\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)(tm)

c) bunyalovsky:

\(VT^2\le2\left(7-x+x-5\right)=4\)

\(\Leftrightarrow VT\le2\)

\(VF=\left(x-6\right)^2+2\ge2\)

Dấu = xảy ra khi x=6

20 tháng 9 2020

\(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=7\)

Ta đánh giá vế phải \(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=\sqrt{2\left(x-4\right)^2+9}+\sqrt{3\left(x-4\right)^2+16}\ge\sqrt{9}+\sqrt{16}=3+4=7\)(Do \(\left(x-4\right)^2\ge0\forall x\))

Như vậy, để \(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=7\)(hay dấu "=" xảy ra) thì \(\left(x-4\right)^2=0\)hay x = 4

Vậy nghiệm duy nhất của phương trình là 4

22 tháng 9 2020

f, \(\sqrt{8+\sqrt{x}}+\sqrt{5-\sqrt{x}}=5\left(đk:25\ge x\ge0\right)\)

\(< =>\sqrt{8+\sqrt{x}}-\sqrt{9}+\sqrt{5-\sqrt{x}}-\sqrt{4}=0\)

\(< =>\frac{8+\sqrt{x}-9}{\sqrt{8+\sqrt{x}}+\sqrt{9}}+\frac{5-\sqrt{x}-4}{\sqrt{5-\sqrt{x}}+\sqrt{4}}=0\)

\(< =>\frac{\sqrt{x}-1}{\sqrt{8+\sqrt{x}}+\sqrt{9}}-\frac{\sqrt{x}-1}{\sqrt{5-\sqrt{x}}+\sqrt{4}}=0\)

\(< =>\left(\sqrt{x}-1\right)\left(\frac{1}{\sqrt{8+\sqrt{x}}+\sqrt{9}}-\frac{1}{\sqrt{5-\sqrt{x}}+\sqrt{4}}\right)=0\)

\(< =>x=1\)( dùng đk đánh giá cái ngoặc to nhé vì nó vô nghiệm )