K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 5 2019

a/ Đặt \(x^2=a\ge0\) pt trở thành:

\(a^2-9a+20=0\Rightarrow\left[{}\begin{matrix}a=5\\a=4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^2=5\\x^2=4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\pm\sqrt{5}\\x=\pm2\end{matrix}\right.\)

b/ \(\Leftrightarrow\left\{{}\begin{matrix}7x-3y=4\\12x+3y=15\end{matrix}\right.\) \(\Rightarrow19x=19\Rightarrow x=1\)

\(4x+y=5\Rightarrow y=5-4x=5-4=1\)

Vậy nghiệm của hệ là \(\left(x;y\right)=\left(1;1\right)\)

20 tháng 5 2019

a) \(x^4-9x^2+20=0\)

\(\Leftrightarrow x^4-4x^2-5x^2+20=0\)

\(\Leftrightarrow x^2\left(x^2-4\right)-5\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(x^2-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-4=0\\x^2-5=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x\in\left\{\pm2\right\}\\x\in\left\{\pm\sqrt{5}\right\}\end{cases}}\)

Vậy....

20 tháng 5 2019

\(x^4-9x^2+20=0\)

\(\Leftrightarrow x^4-4x^2-5x^2+20=0\)

\(\Leftrightarrow x^2\left(x^2-4\right)-5\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x^2-5\right)\left(x^2-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-5=0\\x^2-4=0\end{cases}}\Leftrightarrow x\in\left\{\pm2\right\}\)

AH
Akai Haruma
Giáo viên
29 tháng 4 2023

Bài 1: ĐKXĐ: $2\leq x\leq 4$
PT $\Leftrightarrow (\sqrt{x-2}+\sqrt{4-x})^2=2$

$\Leftrightarrow 2+2\sqrt{(x-2)(4-x)}=2$
$\Leftrightarrow (x-2)(4-x)=0$

$\Leftrightarrow x-2=0$ hoặc $4-x=0$

$\Leftrightarrow x=2$ hoặc $x=4$ (tm)

AH
Akai Haruma
Giáo viên
29 tháng 4 2023

Bài 2:
PT $\Leftrightarrow 4x^3(x-1)-3x^2(x-1)+6x(x-1)-4(x-1)=0$

$\Leftrightarrow (x-1)(4x^3-3x^2+6x-4)=0$
$\Leftrightarrow x=1$ hoặc $4x^3-3x^2+6x-4=0$

Với $4x^3-3x^2+6x-4=0(*)$

Đặt $x=t+\frac{1}{4}$ thì pt $(*)$ trở thành:
$4t^3+\frac{21}{4}t-\frac{21}{8}=0$

Đặt $t=m-\frac{7}{16m}$ thì pt trở thành:

$4m^3-\frac{343}{1024m^3}-\frac{21}{8}=0$
$\Leftrightarrow 4096m^6-2688m^3-343=0$

Coi đây là pt bậc 2 ẩn $m^3$ và giải ta thu được \(m=\frac{\sqrt[3]{49}}{4}\) hoặc \(m=\frac{-\sqrt[3]{7}}{4}\)

Khi đó ta thu được \(x=\frac{1}{4}(1-\sqrt[3]{7}+\sqrt[3]{49})\)

 

20 tháng 5 2019

nãy giải rồi

20 tháng 5 2019

\(\hept{\begin{cases}7x-3y=4\\4x+y=5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}7x-3y=4\\12x+3y=15\end{cases}}\)

Cộng vế ta được :

\(7x-3y+12x+3y=4+15\)

\(\Leftrightarrow19x=19\)

\(\Leftrightarrow x=1\)

Khi đó : \(7-3y=4\Leftrightarrow y=1\)

Vậy \(x=y=1\)

a: =>8x+2y=4 và 8x+3y=5

=>y=1 và 4x=2-1=1

=>x=1/4 và y=1

b: 3x-2y=11 và 4x-5y=3

=>12x-8y=44 và 12x-15y=9

=>7y=35 và 3x-2y=11

=>y=5 và 3x=11+2*y=11+2*5=21

=>x=7 và y=5

c: 5x-4y=3 và 2x+y=4

=>5x-4y=3 và 8x+4y=16

=>13x=19 và 2x+y=4

=>x=19/13 và y=4-2x=4-38/13=52/13-38/13=14/13

d: 3x-y=5 và 5x+2y=28

=>6x-2y=10 và 5x+2y=28

=>11x=38 và 3x-y=5

=>x=38/11 và y=3x-5=104/11-5=104/11-55/11=49/11

30 tháng 6

a: =>8x+2y=4 và 8x+3y=5

=>y=1 và 4x=2-1=1

=>x=1/4 và y=1

b: 3x-2y=11 và 4x-5y=3

=>12x-8y=44 và 12x-15y=9

=>7y=35 và 3x-2y=11

=>y=5 và 3x=11+2*y=11+2*5=21

=>x=7 và y=5

c: 5x-4y=3 và 2x+y=4

=>5x-4y=3 và 8x+4y=16

=>13x=19 và 2x+y=4

=>x=19/13 và y=4-2x=4-38/13=52/13-38/13=14/13

d: 3x-y=5 và 5x+2y=28

=>6x-2y=10 và 5x+2y=28

=>11x=38 và 3x-y=5

=>x=38/11 và y=3x-5=104/11-5=104/11-55/11=49/11

 

29 tháng 3 2022

1.   3x( x - 2 ) - ( x - 2 ) = 0

<=> ( x-2).(3x-1)  = 0 => x = 2 hoặc x = \(\dfrac{1}{3}\)

2.    x( x-1 ) ( x2 + x + 1 ) - 4( x - 1 )

<=> ( x - 1 ).( x (x^2 + x + 1 ) - 4 ) = 0

(phần này tui giải được x = 1 thôi còn bên kia giải ko ra nha )

\(\left\{{}\begin{matrix}\sqrt{5}x-2y=7\\\sqrt{5}x-5y=10\end{matrix}\right.\)<=> \(\left\{{}\begin{matrix}y=-1\\x=\sqrt{5}\end{matrix}\right.\)

29 tháng 3 2022

\(1. 3x^2 - 7x +2=0\)

=>\(Δ=(-7)^2 - 4.3.2\)

        \(= 49-24 = 25\)

Vì 25>0 suy ra phương trình có 2 nghiệm phân biệt:

\(x_1\)=\(\dfrac{-\left(-7\right)+\sqrt{25}}{2.3}=\dfrac{7+5}{6}=2\)

\(x_2\)=\(\dfrac{-\left(-7\right)-\sqrt{25}}{2.3}=\dfrac{7-5}{6}=\dfrac{1}{3}\)

 

  

1)

HPT \(\Leftrightarrow\left\{{}\begin{matrix}15x-6y=-27\\8x+6y=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2y=5x+9\\23x=-23\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(-1;2\right)\)

2)

HPT \(\Leftrightarrow\left\{{}\begin{matrix}2x+y=4\\2x+4y=10\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-3y=-6\\x=5-2y\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=1\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(1;2\right)\)

3)

HPT \(\Leftrightarrow\left\{{}\begin{matrix}4x+6y=14\\3x+6y=12\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\2y=4-x\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(2;1\right)\)

4) 

HPT \(\Leftrightarrow\left\{{}\begin{matrix}5x+6y=17\\54x-6y=42\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}59x=59\\y=9x-7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(1;2\right)\)

 

a) Ta có: \(\left\{{}\begin{matrix}49x+7y=-1\\-\dfrac{4}{3}x-2y=\dfrac{4}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}98x+14y=-2\\-\dfrac{28}{3}x-14y=\dfrac{28}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{266}{3}x=\dfrac{22}{3}\\49x+7y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{11}{133}\\49\cdot\dfrac{11}{133}+7y=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{11}{133}\\7y=-1-\dfrac{77}{19}=-\dfrac{96}{19}\end{matrix}\right.\)

hay \(\left\{{}\begin{matrix}x=\dfrac{11}{133}\\y=-\dfrac{96}{133}\end{matrix}\right.\)

Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=\dfrac{11}{133}\\y=-\dfrac{96}{133}\end{matrix}\right.\)

b) Ta có: \(\left\{{}\begin{matrix}4x+3y=13\\5x-3y=-31\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}9x=-18\\4x+3y=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\3y=13-4x=13-4\cdot\left(-2\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\3y=21\end{matrix}\right.\)

hay \(\left\{{}\begin{matrix}x=-2\\y=7\end{matrix}\right.\)

Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=-2\\y=7\end{matrix}\right.\)