K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: \(x^4+3x^2-4=0\)

=>\(x^4+4x^2-x^2-4=0\)

=>\(\left(x^2+4\right)\left(x^2-1\right)=0\)

=>\(x^2-1=0\)

=>\(x^2=1\)

=>\(x=\pm1\)

2: \(\left(x^2-2x\right)^2+\left|x^2-2x\right|-2=0\)

=>\(\left(\left|x^2-2x\right|\right)^2+\left|x^2-2x\right|-2=0\)

=>\(\left(\left|x^2-2x\right|+2\right)\left(\left|x^2-2x\right|-1\right)=0\)

=>\(\left|x^2-2x\right|-1=0\)

=>\(\left[{}\begin{matrix}x^2-2x=1\\x^2-2x=-1\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x^2-2x-1=0\\x^2-2x+1=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}\left(x-1\right)^2-2=0\\\left(x-1\right)^2=0\end{matrix}\right.\)

=>\(x\in\left\{1;\pm\sqrt{2}+1\right\}\)

3: ĐKXĐ: \(x\notin\left\{-2;-1\right\}\)

\(\dfrac{x}{x+2}< \dfrac{x}{x+1}\)

=>\(\dfrac{x}{x+2}-\dfrac{x}{x+1}< 0\)

=>\(\dfrac{x\left(x+1\right)-x\left(x+2\right)}{\left(x+2\right)\left(x+1\right)}< 0\)

=>\(\dfrac{-x}{\left(x+2\right)\left(x+1\right)}< 0\)

=>\(\dfrac{x}{\left(x+1\right)\left(x+2\right)}>0\)

TH1: \(\left\{{}\begin{matrix}x>0\\\left(x+1\right)\left(x+2\right)>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>0\\\left[{}\begin{matrix}x>-1\\x< -2\end{matrix}\right.\end{matrix}\right.\)

=>\(x>0\)

TH2: \(\left\{{}\begin{matrix}x< 0\\\left(x+1\right)\left(x+2\right)< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< 0\\-2< x< -1\end{matrix}\right.\)

=>-2<x<-1

AH
Akai Haruma
Giáo viên
26 tháng 2 2024

1.

$x^4+3x^2-4=0$

$\Leftrightarrow (x^4-x^2)+(4x^2-4)=0$

$\Leftrightarrow x^2(x^2-1)+4(x^2-1)=0$

$\Leftrightarrow (x^2-1)(x^2+4)=0$

$\Leftrightarrow x^2-1=0$ hoặc $x^2+4=0$

Nếu $x^2-1=0\Leftrightarrow x^2=1\Leftrightarrow x=\pm 1$

Nếu $x^2+4=0\Leftrightarrow x^2=-4<0$ (vô lý)

Vậy pt có nghiệm $x=1$ hoặc $x=-1$

a: =>5-x+6=12-8x

=>-x+11=12-8x

=>7x=1

hay x=1/7

b: \(\dfrac{3x+2}{2}-\dfrac{3x+1}{6}=2x+\dfrac{5}{3}\)

\(\Leftrightarrow9x+6-3x-1=12x+10\)

=>12x+10=6x+5

=>6x=-5

hay x=-5/6

d: =>(x-2)(x-3)=0

=>x=2 hoặc x=3

e:

Tham khảo: undefined

a: \(\Leftrightarrow x^2-2x+1+4x^2+4x+4-5x^2+5=0\)

\(\Leftrightarrow2x+10=0\)

hay x=-5

a: (x-3)(x-2)<0

=>x-2>0 và x-3<0

=>2<x<3

b: \(\left(x+3\right)\left(x+4\right)\left(x^2+2\right)\ge0\)

\(\Leftrightarrow\left(x+3\right)\left(x+4\right)\ge0\)

=>x>=-3 hoặc x<=-4

c: \(\dfrac{x-1}{x-2}\ge0\)

nên \(\left[{}\begin{matrix}x-2>0\\x-1\le0\end{matrix}\right.\Leftrightarrow x\in(-\infty;1]\cup\left(2;+\infty\right)\)

d: \(\dfrac{x+3}{2-x}\ge0\)

\(\Leftrightarrow\dfrac{x+3}{x-2}\le0\)

hay \(x\in[-3;2)\)

a: \(\left(3x-1\right)^2-\left(x+3\right)^3=\left(2-x\right)\left(x^2+2x+4\right)\)

\(\Leftrightarrow9x^2-6x+1-x^3-9x^2-27x-27=8-x^3\)

\(\Leftrightarrow-x^3-33x-26-8+x^3=0\)

=>-33x=34

hay x=-34/33

b: \(\left(x+1\right)\left(x-1\right)\left(x^2+1\right)-\left(x^2-1\right)^2=2\)

\(\Leftrightarrow\left(x^2+1\right)\left(x^2-1\right)-\left(x^2-1\right)^2=2\)

\(\Leftrightarrow x^4-1-x^4+2x^2-1=2\)

\(\Leftrightarrow2x^2=4\)

hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)

c: \(x^2-2\sqrt{3}x+3=0\)

\(\Leftrightarrow\left(x-\sqrt{3}\right)^2=0\)

hay \(x=\sqrt{3}\)

d: \(\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)-\left(x-\sqrt{2}\right)^2=0\)

\(\Leftrightarrow\left(x-\sqrt{2}\right)\left(x+\sqrt{2}-x+\sqrt{2}\right)=0\)

\(\Leftrightarrow x-\sqrt{2}=0\)

hay \(x=\sqrt{2}\)

2: \(\Leftrightarrow\left(x-4\right)\left(x+1\right)+\left(x+4\right)\left(x-1\right)=2\left(x-1\right)\left(x+1\right)\)

=>x^2-3x-4+x^2+3x-4=2x^2-2

=>2x^2-8=2x^2-2(loại)

3: \(\Leftrightarrow\left(x^2-x\right)\left(x-3\right)+x^2\left(x+3\right)=-7x^2+3x\)

=>x^3-3x^2-x^2+3x+x^3+3x^2+7x^2-3x=0

=>2x^3+6x^2=0

=>2x^2(x+3)=0

=>x=0(nhận) hoặc x=-3(loại)

12 tháng 3 2018

bài 1:

b,\(\dfrac{x+2}{x}=\dfrac{x^2+5x+4}{x^2+2x}+\dfrac{x}{x+2}\)(ĐKXĐ:x ≠0,x≠-2)

<=>\(\dfrac{\left(x+2\right)^2}{x\left(x+2\right)}=\dfrac{x^2+5x+4}{x\left(x+2\right)}+\dfrac{x^2}{x\left(x+2\right)}\)

=>\(x^2+4x+4=x^2+5x+4+x^2\)

<=>\(x^2-x^2-x^2+4x-5x+4-4=0\)

<=>\(-x^2-x=0< =>-x\left(x+1\right)=0< =>\left[{}\begin{matrix}x=0\left(loại\right)\\x+1=0< =>x=-1\left(nhận\right)\end{matrix}\right.\)

vậy...............

d,\(\left(x+3\right)^2-25=0< =>\left(x+3-5\right)\left(x+3+5\right)=0< =>\left(x-2\right)\left(x+8\right)=0< =>\left[{}\begin{matrix}x-2=0\\x+8=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=2\\x=-8\end{matrix}\right.\)

vậy............

bài 3:

g,\(\dfrac{4}{x+1}-\dfrac{2}{x-2}=\dfrac{x+3}{x^2-x-2}\)(ĐKXĐ:x khác -1,x khác 2)

<=>\(\dfrac{4}{x+1}-\dfrac{2}{x-2}=\dfrac{x+3}{x^2-2x+x-2}\)

<=>\(\dfrac{4}{x+1}-\dfrac{2}{x-2}=\dfrac{x+3}{x\left(x-2\right)+\left(x-2\right)}\)

<=>\(\dfrac{4}{x+1}-\dfrac{2}{x-2}=\dfrac{x+3}{\left(x+1\right)\left(x-2\right)}\)

<=>\(\dfrac{4\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}-\dfrac{2\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}=\dfrac{x+3}{\left(x+1\right)\left(x-2\right)}\)

=>\(4x-8-2x-2=x+3\)

<=>\(x=13\)

vậy..............

mấy ý khác bạn làm tương tụ nhé

chúc bạn học tốt ^ ^

15 tháng 4 2018

a) \(\left(2x+1\right)^2-\left(x+2\right)^2>0\)

\(\Leftrightarrow\left(2x+1-x-2\right)\left(2x+1+x+2\right)>0\)

\(\Leftrightarrow\left(x-1\right)\left(3x+3\right)>0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1>0\\3x+3>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-1< 0\\3x+3< 0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>1\\x>-1\end{matrix}\right.\\\left\{{}\begin{matrix}x< 1\\x< -1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\)

Vậy tập nghiệm của bất phương trình là x > 1 hoặc x < -1

b) Sửa lại rồi làm câu b nèk\(\dfrac{5x-3x}{5}+\dfrac{3x+1}{4}>\dfrac{x\left(2x+1\right)}{2}-\dfrac{3}{2}\)

\(\Leftrightarrow4\left(5x-3x\right)+5\left(3x+1\right)>10\left(x+2x\right)-30\)\(\Leftrightarrow20x-12x+15x+5>10x+20x-30\)\(\Leftrightarrow20x-12x+15x-10x-20x>-30-5\)\(\Leftrightarrow-7x>-35\)

\(\Leftrightarrow x< 5\)

c) \(\dfrac{-1}{2x+3}< 0\)

dễ nhé mình học bài hóa mai kt 15 phút nên ko có time để giúp

22 tháng 2 2018

a.

\(\left(2x-1\right)^3+6\left(3x-1\right)^3=2\left(x+1\right)^3+6\left(x+2\right)^3\)

\(\Leftrightarrow\left(2x\right)^3-3.\left(2x\right)^2.1+3.2x.1+1^3+6.\left[\left(3x\right)^3-3.\left(3x\right)^2.1+3.3x.1+1^3\right]=2\left(x^3+3x^2+3x+1\right)+6\left(x^2+3.x^2.2+3.x.2^2+2^3\right)\)

22 tháng 2 2018

xin lỗi mình gửi nhầm

25 tháng 2 2018

a) Đặt \(2x^2-3x-1=a\)

Bt \(\Leftrightarrow a^2-3\left(a-4\right)-16=0\)

\(\Leftrightarrow a^2-3a+12-16=0\)

\(\Leftrightarrow\left(a-4\right)\left(a+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x^2-3x-1=4\\2x^2-3x-1=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x^2-3x-5=0\\2x^2-3x=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x+1\right)\left(2x-5\right)=0\\x\left(2x-3\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x=-1\\x=2.5\end{matrix}\right.\\\left[{}\begin{matrix}x=0\\x=1.5\end{matrix}\right.\end{matrix}\right.\)

21 tháng 12 2018

GIÚP MÌNH VỚI MAI LÀ NỘP BÀI RỒI

23 tháng 12 2018

câu a) và b) thì sử dụng tính chất nếu tích =0 thì có ít nhất 1 thừa số =0

c)4x^2+4x+1=0

(2x+1)^2=0

2x+1=0

x=-1/2