\(\sqrt{x+5}+\sqrt{3-x}-2.\left(\sqrt{15-2x-x^2}+1\right)=0\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2020

\(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=7\)

Ta đánh giá vế phải \(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=\sqrt{2\left(x-4\right)^2+9}+\sqrt{3\left(x-4\right)^2+16}\ge\sqrt{9}+\sqrt{16}=3+4=7\)(Do \(\left(x-4\right)^2\ge0\forall x\))

Như vậy, để \(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=7\)(hay dấu "=" xảy ra) thì \(\left(x-4\right)^2=0\)hay x = 4

Vậy nghiệm duy nhất của phương trình là 4

22 tháng 9 2020

f, \(\sqrt{8+\sqrt{x}}+\sqrt{5-\sqrt{x}}=5\left(đk:25\ge x\ge0\right)\)

\(< =>\sqrt{8+\sqrt{x}}-\sqrt{9}+\sqrt{5-\sqrt{x}}-\sqrt{4}=0\)

\(< =>\frac{8+\sqrt{x}-9}{\sqrt{8+\sqrt{x}}+\sqrt{9}}+\frac{5-\sqrt{x}-4}{\sqrt{5-\sqrt{x}}+\sqrt{4}}=0\)

\(< =>\frac{\sqrt{x}-1}{\sqrt{8+\sqrt{x}}+\sqrt{9}}-\frac{\sqrt{x}-1}{\sqrt{5-\sqrt{x}}+\sqrt{4}}=0\)

\(< =>\left(\sqrt{x}-1\right)\left(\frac{1}{\sqrt{8+\sqrt{x}}+\sqrt{9}}-\frac{1}{\sqrt{5-\sqrt{x}}+\sqrt{4}}\right)=0\)

\(< =>x=1\)( dùng đk đánh giá cái ngoặc to nhé vì nó vô nghiệm )

12 tháng 10 2018

\(\sqrt{x+5}+\sqrt{3-x}-2\left(\sqrt{15-2x-x^2}+1\right)=0\) (ĐKXĐ: \(-5\le x\le3\))

Đặt \(\hept{\begin{cases}\sqrt{x+5}=a\\\sqrt{3-x}=b\end{cases}\left(a;b\ge0\right)\Rightarrow ab=\sqrt{\left(x+5\right)\left(3-x\right)}=\sqrt{15-2x-x^2}}\)

Đồng thời: \(\Rightarrow a^2+b^2=8\)

Khi đó; ta có hệ pt : \(\hept{\begin{cases}a^2+b^2=8\\a+b-2\left(ab+1\right)=0\end{cases}\Leftrightarrow}\hept{\begin{cases}\left(a+b\right)^2=8+2ab\left(1\right)\\a+b=2\left(ab+1\right)\left(2\right)\end{cases}}\)

Thế (2) vào (1); ta được: \(4\left(ab+1\right)^2=8+2ab\). Đặt ab=c

Suy ra: \(4\left(c+1\right)^2=8+2c\Leftrightarrow2\left(c^2+2c+1\right)=4+c\)

\(\Leftrightarrow2c^2+3c-2=0\Leftrightarrow2c^2+4c-\left(c+2\right)=0\)

\(\Leftrightarrow2c\left(c+2\right)-\left(c+2\right)=0\Leftrightarrow\left(c+2\right)\left(2c-1\right)=0\Leftrightarrow\orbr{\begin{cases}c=-2\\c=\frac{1}{2}\end{cases}}\)

*) Với c = -2 => ab = -2; thay vào (2) thì có: \(a+b=-2\)(loại vì \(a;b\ge0\))

*)  Với c = 1/2 => ab = 1/2; thay vào (2) thì có; \(a+b=3\)

Ta có: \(\left(a-b\right)^2=a^2+b^2-2ab=8-2.\frac{1}{2}=7\Rightarrow a-b=\pm\sqrt{7}\)

+) Nếu \(\hept{\begin{cases}a+b=3\\a-b=\sqrt{7}\end{cases}\Rightarrow}a=\frac{3+\sqrt{7}}{2}\Rightarrow\sqrt{x+5}=\frac{3+\sqrt{7}}{2}\Leftrightarrow x=\frac{3\sqrt{7}-2}{2}\)(t/m ĐKXĐ)

+) Nếu \(\hept{\begin{cases}a+b=3\\a-b=-\sqrt{7}\end{cases}\Rightarrow}a=\frac{3-\sqrt{7}}{2}\Rightarrow\sqrt{x+5}=\frac{3-\sqrt{7}}{2}\Leftrightarrow x=-\frac{2+3\sqrt{7}}{2}\)(t/m ĐKXĐ)

Vậy tập nghiệm của pt cho là \(S=\left\{\frac{3\sqrt{7}-2}{2};-\frac{2+3\sqrt{7}}{2}\right\}.\)

đặt \(\sqrt{2x-x^2}=a\)

phương trình trở thành:

\(\sqrt{1+a}+\sqrt{1-a}=2\left(1-a^2\right)^2\left(1-2a^2\right)\)

đến đây thì khai triển đi

22 tháng 8 2017

1/ Đặt  \(\hept{\begin{cases}\sqrt{x+1}=a\\\sqrt{x}=b\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a-\frac{a}{b}-1=0\\a^2-b^2=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}ab=a+b\\\left(a+b\right)\left(a-b\right)=1\end{cases}}\)

Tới đây b làm nốt nhé

4 tháng 4 2017

a) (3x2 - 7x – 10)[2x2 + (1 - √5)x + √5 – 3] = 0

=> hoặc (3x2 - 7x – 10) = 0 (1)

hoặc 2x2 + (1 - √5)x + √5 – 3 = 0 (2)

Giải (1): phương trình a - b + c = 3 + 7 - 10 = 0

nên

x1 = - 1, x2 = =

Giải (2): phương trình có a + b + c = 2 + (1 - √5) + √5 - 3 = 0

nên

x3 = 1, x4 =

b) x3 + 3x2– 2x – 6 = 0 ⇔ x2(x + 3) – 2(x + 3) = 0 ⇔ (x + 3)(x2 - 2) = 0

=> hoặc x + 3 = 0

hoặc x2 - 2 = 0

Giải ra x1 = -3, x2 = -√2, x3 = √2

c) (x2 - 1)(0,6x + 1) = 0,6x2 + x ⇔ (0,6x + 1)(x2 – x – 1) = 0

=> hoặc 0,6x + 1 = 0 (1)

hoặc x2 – x – 1 = 0 (2)

(1) ⇔ 0,6x + 1 = 0

⇔ x2 = =

(2): ∆ = (-1)2 – 4 . 1 . (-1) = 1 + 4 = 5, √∆ = √5

x3 = , x4 =

Vậy phương trình có ba nghiệm:

x1 = , x2 = , x3 = ,

d) (x2 + 2x – 5)2 = ( x2 – x + 5)2 ⇔ (x2 + 2x – 5)2 - ( x2 – x + 5)2 = 0

⇔ (x2 + 2x – 5 + x2 – x + 5)( x2 + 2x – 5 - x2 + x - 5) = 0

⇔ (2x2 + x)(3x – 10) = 0

⇔ x(2x + 1)(3x – 10) = 0

Hoặc x = 0, x = , x =

Vậy phương trình có 3 nghiệm:

x1 = 0, x2 = , x3 =