K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2016

VT=(x-1)3+(2-x)(4+2x+x2)+3x(x+2)=9x+7 (*)

thay (*) vào VT của pt đầu ta đc

=>9x+7=17

=>9x=10

=>x=\(\frac{10}{9}\)

19 tháng 2 2021

a)(3x-1)(4x-8)=0

⇔3x-1=0 hoặc 4x-8=0

1.3x-1=0⇔3x=1⇔x=1/3

2.4x-8=0⇔4x=8⇔x=2

phương trình có 2 nghiệm:x=1/3 và x=2

b)(x-2)(1-3x)=0

⇔x-2=0 hoặc 1-3x=0

1.x-2=0⇔x=2

2.1-3x=0⇔-3x=1⇔x=-1/3

phương trình có 2 nghiệm:x=2 và x=-1/3

c)(x-3)(x+4)-(x-3)(2x-1)=0

⇔(x+4)(2x-1)=0

⇔x+4=0 hoặc 2x-1=0

1.x+4=0⇔x=-4

2.2x-1=0⇔2x=1⇔x=1/2

phương trình có hai nghiệm:x=-4 và x=1/2

d)(x+1)(x+2)=2x(x+2)

⇔(x+1)(x+2)-2x(x+2)=0

⇔2x(x+1)=0

⇔2x=0 hoặc x+1=0

1.2x=0⇔x=0

2.x+1=0⇔x=-1

phương trình có 2 nghiệm:x=0 và x=-1

 

Thiếu vế phải rồi bạn

19 tháng 6 2023

Sorry bn tai vua nay no bi loi

18 tháng 4 2016

(x-1)3+(2-x)(4+2x+x2)+3x(x+2)=17

 x3 - 3. x.1 + 3.x.1+ 1+ 8 + 4x + 2x- 4x - 2x2 - x3 + 3x2  + 6x = 17

x- 3x+ 3x + 1 + 8 + 4+ 2x - 4x - 2x2 - x+ 3x+ 6x = 17

( x3 - x) ( -3x2 + 3x2 + 2x2 - 2x2 ) (3x + 4x - 4x) (1+8+4) = 17

                                                        3x . 13 = 17

                                                       3x = 17/13

                                                        x = 17/13 : 3

                                                        x = 17/39

Ko bt đúng hay sai nữa. Nếu sai thì mấy pn sửa lại giúp mk nha

15 tháng 4 2015

\(\left(5x-\frac{2}{3}\right)-\frac{2x^2-x}{2}\ge\frac{x\left(1-3x\right)}{3}-\frac{5x}{4}\)

<=> \(\frac{60x-8-6\left(2x^2-x\right)}{12}\ge\frac{4x\left(1-3x\right)-15x}{12}\)

<=> \(60x-8-12x^2+6x\ge4x-12x^2-15x\)

<=> \(47x\ge8\)

<=> \(x\ge\frac{8}{47}\)

16 tháng 8 2015

khì +1 vào mỗi phân số      

19 tháng 2 2021

\(3\left(x-2\right)+4=5x-2\left(x-1\right)\\ \Leftrightarrow3x-6+4=5x-2x+2\\ \Leftrightarrow0x=4\left(vôlý\right)\)

Vậy pt vô nghiệm

 

\(2\left(x-2\right)-3\left(1-2x\right)=5\\ \Leftrightarrow2x-4-3+6x=5\\ \Leftrightarrow8x=12\\ \Leftrightarrow x=\dfrac{3}{2}\)

30 tháng 1 2019

\(x^4+3x^2+x^3+2x+2=0\)

\(\Leftrightarrow x^4+x^3+x^2+2x^2+2x+2=0\)

\(\Leftrightarrow\left(x^2+1\right)\left(x^2+x+1\right)=0\)

Do 2 thừa số ở VT đều > 0

\(\Rightarrow\) PTVN

30 tháng 1 2019

\(x^4+x^3+3x^2+2x+2=0\\ \Leftrightarrow x^4+x^3+x^2+2x^2+2x+2=0\\ \Leftrightarrow x^2\left(x^2+x+1\right)+2\left(x^2+x+1\right)=0\\ \Leftrightarrow\left(x^2+x+1\right)\left(x^2+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2+x+1=0\left(VN\right)\\x^2+2=0\left(VN\right)\end{matrix}\right.\)

Vậy phương trình vô nghiệm