Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)(3x-1)(4x-8)=0
⇔3x-1=0 hoặc 4x-8=0
1.3x-1=0⇔3x=1⇔x=1/3
2.4x-8=0⇔4x=8⇔x=2
phương trình có 2 nghiệm:x=1/3 và x=2
b)(x-2)(1-3x)=0
⇔x-2=0 hoặc 1-3x=0
1.x-2=0⇔x=2
2.1-3x=0⇔-3x=1⇔x=-1/3
phương trình có 2 nghiệm:x=2 và x=-1/3
c)(x-3)(x+4)-(x-3)(2x-1)=0
⇔(x+4)(2x-1)=0
⇔x+4=0 hoặc 2x-1=0
1.x+4=0⇔x=-4
2.2x-1=0⇔2x=1⇔x=1/2
phương trình có hai nghiệm:x=-4 và x=1/2
d)(x+1)(x+2)=2x(x+2)
⇔(x+1)(x+2)-2x(x+2)=0
⇔2x(x+1)=0
⇔2x=0 hoặc x+1=0
1.2x=0⇔x=0
2.x+1=0⇔x=-1
phương trình có 2 nghiệm:x=0 và x=-1
(x-1)3+(2-x)(4+2x+x2)+3x(x+2)=17
x3 - 3. x2 .1 + 3.x.12 + 13 + 8 + 4x + 2x2 - 4x - 2x2 - x3 + 3x2 + 6x = 17
x3 - 3x2 + 3x + 1 + 8 + 4+ 2x2 - 4x - 2x2 - x2 + 3x3 + 6x = 17
( x3 - x3 ) ( -3x2 + 3x2 + 2x2 - 2x2 ) (3x + 4x - 4x) (1+8+4) = 17
3x . 13 = 17
3x = 17/13
x = 17/13 : 3
x = 17/39
Ko bt đúng hay sai nữa. Nếu sai thì mấy pn sửa lại giúp mk nha
\(\left(5x-\frac{2}{3}\right)-\frac{2x^2-x}{2}\ge\frac{x\left(1-3x\right)}{3}-\frac{5x}{4}\)
<=> \(\frac{60x-8-6\left(2x^2-x\right)}{12}\ge\frac{4x\left(1-3x\right)-15x}{12}\)
<=> \(60x-8-12x^2+6x\ge4x-12x^2-15x\)
<=> \(47x\ge8\)
<=> \(x\ge\frac{8}{47}\)
\(3\left(x-2\right)+4=5x-2\left(x-1\right)\\ \Leftrightarrow3x-6+4=5x-2x+2\\ \Leftrightarrow0x=4\left(vôlý\right)\)
Vậy pt vô nghiệm
\(2\left(x-2\right)-3\left(1-2x\right)=5\\ \Leftrightarrow2x-4-3+6x=5\\ \Leftrightarrow8x=12\\ \Leftrightarrow x=\dfrac{3}{2}\)
\(x^4+3x^2+x^3+2x+2=0\)
\(\Leftrightarrow x^4+x^3+x^2+2x^2+2x+2=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(x^2+x+1\right)=0\)
Do 2 thừa số ở VT đều > 0
\(\Rightarrow\) PTVN
\(x^4+x^3+3x^2+2x+2=0\\ \Leftrightarrow x^4+x^3+x^2+2x^2+2x+2=0\\ \Leftrightarrow x^2\left(x^2+x+1\right)+2\left(x^2+x+1\right)=0\\ \Leftrightarrow\left(x^2+x+1\right)\left(x^2+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2+x+1=0\left(VN\right)\\x^2+2=0\left(VN\right)\end{matrix}\right.\)
Vậy phương trình vô nghiệm
VT=(x-1)3+(2-x)(4+2x+x2)+3x(x+2)=9x+7 (*)
thay (*) vào VT của pt đầu ta đc
=>9x+7=17
=>9x=10
=>x=\(\frac{10}{9}\)