\(\sqrt{x^2+6x+9}=|2x-1|\)

b, 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
16 tháng 8 2020

8.

ĐKXĐ: \(x\ge\frac{2}{3}\)

\(\Leftrightarrow\frac{9\left(x+3\right)}{\sqrt{4x+1}+\sqrt{3x-2}}=x+3\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\left(l\right)\\\frac{9}{\sqrt{4x+1}+\sqrt{3x-2}}=1\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\sqrt{4x+1}+\sqrt{3x-2}=9\)

\(\Leftrightarrow\sqrt{4x+1}-5+\sqrt{3x-2}-4=0\)

\(\Leftrightarrow\frac{4\left(x-6\right)}{\sqrt{4x+1}+5}+\frac{3\left(x-6\right)}{\sqrt{3x-2}+4}=0\)

\(\Leftrightarrow\left(x-6\right)\left(\frac{4}{\sqrt{4x+1}+5}+\frac{3}{\sqrt{3x-2}+4}\right)=0\)

\(\Leftrightarrow x=6\)

NV
16 tháng 8 2020

6.

ĐKXD: ...

\(\Leftrightarrow2\left(x^2-6x+9\right)+\left(x+5-4\sqrt{x+1}\right)=0\)

\(\Leftrightarrow2\left(x-3\right)^2+\frac{\left(x-3\right)^2}{x+5+4\sqrt{x+1}}=0\)

\(\Leftrightarrow\left(x-3\right)^2\left(2+\frac{1}{x+5+4\sqrt{x+1}}\right)=0\)

\(\Leftrightarrow x=3\)

7.

\(\sqrt{x-\frac{1}{x}}-\sqrt{2x-\frac{5}{x}}+\frac{4}{x}-x=0\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x-\frac{1}{x}}=a\ge0\\\sqrt{2x-\frac{5}{x}}=b\ge0\end{matrix}\right.\) \(\Rightarrow a^2-b^2=\frac{4}{x}-x\)

\(\Rightarrow a-b+a^2-b^2=0\)

\(\Leftrightarrow\left(a-b\right)\left(a+b+1\right)=0\)

\(\Leftrightarrow a=b\Leftrightarrow x-\frac{1}{x}=2x-\frac{5}{x}\)

\(\Leftrightarrow x=\frac{4}{x}\Rightarrow x=\pm2\)

Thế nghiệm lại pt ban đầu để thử (hoặc là bạn tìm ĐKXĐ từ đầu)

NV
22 tháng 10 2019

a/ ĐKXĐ: \(0\le x\le4\)

\(\left(x^2-4x\right)\sqrt{-x^2+4x}+x^2-4x+2=0\)

Đặt \(\sqrt{-x^2+4x}=a\ge0\)

\(-a^2.a-a^2+2=0\)

\(\Leftrightarrow a^3+a^2-2=0\)

\(\Leftrightarrow\left(a-1\right)\left(a^2+2a+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a^2+2a+2=0\left(vn\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{-x^2+4x}=1\Leftrightarrow x^2-4x+1=0\Rightarrow...\)

b/ \(x^4+2x^2+x\sqrt{2x^2+4}-4=0\)

Đặt \(x\sqrt{2x^2+4}=a\Rightarrow x^2\left(2x^2+4\right)=a^2\Rightarrow x^4+2x^2=\frac{a^2}{2}\)

\(\frac{a^2}{2}+a-4=0\Leftrightarrow a^2+2a-8=0\Rightarrow\left[{}\begin{matrix}a=2\\a=-4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x\sqrt{2x^2+4}=2\left(x>0\right)\\x\sqrt{2x^2+4}=-4\left(x< 0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x^4+4x^2=4\\2x^4+4x^2=16\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2=\sqrt{3}-1\\x^2=-\sqrt{3}-1\left(l\right)\\x^2=2\\x^2=-4\left(l\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\sqrt{\sqrt{3}-1}\\x=-\sqrt{2}\end{matrix}\right.\)

NV
22 tháng 10 2019

c/ Đặt \(\sqrt[3]{2x^2+3x-10}=a\Rightarrow2x^2+3x=a^3+10\)

\(a^3+10-14=2a\)

\(\Leftrightarrow a^3-2a-4=0\)

\(\Leftrightarrow\left(a-2\right)\left(a^2+2a+2\right)=0\Rightarrow a=2\)

\(\Rightarrow\sqrt[3]{2x^2+3x-10}=2\Rightarrow2x^2+3x-18=0\Rightarrow...\)

d/ \(\Leftrightarrow2\left(3x^2+x+4\right)+\sqrt[3]{3x^2+x+4}-18=0\)

Đặt \(\sqrt[3]{3x^2+x+4}=a\)

\(2a^3+a-18=0\)

\(\Leftrightarrow\left(a-2\right)\left(2a^2+4a+9\right)=0\Rightarrow a=2\)

\(\Rightarrow\sqrt[3]{3x^2+x+4}=2\Rightarrow3x^2+x-4=0\Rightarrow...\)

e/ \(\Leftrightarrow x^2+5x+2-3\sqrt{x^2+5x+2}-2=0\)

Đặt \(\sqrt{x^2+5x+2}=a\ge0\)

\(a^2-3a-2=0\Rightarrow\left[{}\begin{matrix}a=\frac{3+\sqrt{17}}{2}\\a=\frac{3-\sqrt{17}}{2}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x^2+5x+2}=\frac{3+\sqrt{17}}{2}\Rightarrow x^2+5x-\frac{9+3\sqrt{17}}{2}=0\)

Bài cuối xấu quá, chắc nhầm số liệu

NV
16 tháng 2 2020

a/ ĐKXĐ: ...

\(\Leftrightarrow\left(x^2-6x\right)\left(\sqrt{17-x^2}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-6x=0\\\sqrt{17-x^2}=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x\left(x-6\right)=0\\x^2=16\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=6\left(l\right)\\x=4\\x=-4\end{matrix}\right.\)

b/ĐKXĐ: \(x\ge-3\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+5x+4=0\\\sqrt{x+3}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-4\left(l\right)\\x=-3\end{matrix}\right.\)

NV
16 tháng 2 2020

c/ ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ge1\\x\le1\end{matrix}\right.\) \(\Rightarrow x=1\)

Thay \(x=1\) vào pt thấy ko thỏa mãn

Vậy pt vô nghiệm

d/ ĐKXĐ: \(x\ge2\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-4x+3=0\\\sqrt{x-2}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\left(l\right)\\x=2\end{matrix}\right.\)

4 tháng 3 2020

mình sửa lại bài 3 ý a, \(\left|5x-3\right|< 2\)

1. \(x^3-x^2+12x\sqrt{x-1}+20=0\) 2. \(x^3+\sqrt{\left(x-1\right)^3}=9x+8\) 3. \(\sqrt{2x^2+x+1}+\sqrt{x^2-x+1}=3x\) 4. \(x^6+\left(x^3-3\right)^3=3x^5-9x^2-1\) 5. \(x^2-6\left(x+3\right)\sqrt{x+1}+14x+3\sqrt{x+1}+13=0\) 6. \(x^2-4x+\left(x-3\right)\sqrt{x^2-x+1}=-1\) 7. \(\sqrt{2x-1}+\sqrt{5-x}=x-2+2\sqrt{-2x^2+11x-5}\) 8. \(\sqrt{5x+11}-\sqrt{6-x}+5x^2-14x-60=0\) 9. \(x^2+6x+8=3\sqrt{x+2}\) 10. \(2x^2+3x-2=\left(2x-1\right)\sqrt{2x^2+x-3}\) 11. ...
Đọc tiếp

1. \(x^3-x^2+12x\sqrt{x-1}+20=0\)

2. \(x^3+\sqrt{\left(x-1\right)^3}=9x+8\)

3. \(\sqrt{2x^2+x+1}+\sqrt{x^2-x+1}=3x\)

4. \(x^6+\left(x^3-3\right)^3=3x^5-9x^2-1\)

5. \(x^2-6\left(x+3\right)\sqrt{x+1}+14x+3\sqrt{x+1}+13=0\)

6. \(x^2-4x+\left(x-3\right)\sqrt{x^2-x+1}=-1\)

7. \(\sqrt{2x-1}+\sqrt{5-x}=x-2+2\sqrt{-2x^2+11x-5}\)

8. \(\sqrt{5x+11}-\sqrt{6-x}+5x^2-14x-60=0\)

9. \(x^2+6x+8=3\sqrt{x+2}\)

10. \(2x^2+3x-2=\left(2x-1\right)\sqrt{2x^2+x-3}\)

11. \(\sqrt{x+1}+\sqrt{4-x}-\sqrt{\left(x+1\right)\left(4-x\right)}=1\)

12. \(x^2-\sqrt{x^2-4x}=4\left(x+3\right)\)

13. \(x^2-x-4=2\sqrt{x-1}\left(1-x\right)\)

14. \(\frac{1}{\sqrt{x}+1}+\frac{1}{\sqrt{x}-1}=1\)

15. \(\sqrt{2x^2+3x+2}+\sqrt{4x^2+6x+21}=11\)

16. \(\sqrt{x+3+3\sqrt{2x-3}}+\sqrt{x-1+\sqrt{2x-1}}=2\sqrt{2}\)

17. \(\left(x-2\right)^2\left(x-1\right)\left(x-3\right)=12\)

18. \(2x^2+\sqrt{x^2-2x-19}=4x+74\)

19. \(x^4+x^2-20=0\)

20. \(x+\sqrt{4-x^2}=2+3x\sqrt{4-x^2}\)

21. \(\left(x^2+x+1\right)\left(\sqrt[3]{\left(3x-2\right)^2}+\sqrt[3]{3x-2}+1\right)=9\)

22. \(\sqrt{x^2-3x+5}+x^2=3x+7\)

23. \(x^2+6x+5=\sqrt{x+7}\)

24. \(\frac{2x^2-3x+10}{x+2}=3\sqrt{\frac{x^2-2x+4}{x+2}}\)

25. \(5\sqrt{x-1}-\sqrt{x+7}=3x-4\)

26. \(2\left(x^2+2\right)=5\sqrt{x^3+1}\)

27. \(\sqrt{x-1}+\sqrt{5-x}-2=2\sqrt{\left(x-1\right)\left(5-x\right)}\)

28. \(x^2+\frac{9x^2}{\left(x-3\right)^2}=40\)

29. \(\frac{26x+5}{\sqrt{x^2+30}}+2\sqrt{26x+5}=3\sqrt{x^2+30}\)

30. \(\frac{\sqrt{27+x^2+x}}{2+\sqrt{5-\left(x^2+x\right)}}=\frac{\sqrt{27+2x}}{2+\sqrt{5-2x}}\)

12
20 tháng 3 2020

28. \(x^2+\frac{9x^2}{\left(x-3\right)^2}=40\) DK: \(x\ne3\)

PT\(\Leftrightarrow\left(x+\frac{3x}{x-3}\right)^2-6\frac{x^2}{x-3}-40=0\)\(\Leftrightarrow\frac{x^4}{\left(x-3\right)^2}-6\frac{x^2}{x-3}-40=0\)

Dat \(\frac{x^2}{x-3}=a\). PTTT \(a^2-6a-40=0\)\(\Leftrightarrow\left(a-10\right)\left(a+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=10\\a=-4\end{matrix}\right.\)

giai tiep

20 tháng 3 2020

14. \(\frac{1}{\sqrt{x}+1}+\frac{1}{\sqrt{x}-1}=1\) DK: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

PT\(\Leftrightarrow\frac{\sqrt{x}-1+\sqrt{x}+1}{x-1}=1\Leftrightarrow2\sqrt{x}=x-1\)\(\Leftrightarrow x-2\sqrt{x}+1=2\Leftrightarrow\left(\sqrt{x}-1\right)^2=2\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3+2\sqrt{2}\\x=3-2\sqrt{2}\end{matrix}\right.\)

NV
26 tháng 10 2019

a/

\(\Leftrightarrow4x^2-12x+9=\left(3x-2\right)^2\)

\(\Leftrightarrow5x^2-5=0\Rightarrow x=\pm1\)

b/

\(\Leftrightarrow25x^2-10x+1=\left(x+6\right)^2\)

\(\Leftrightarrow24x^2-22x-35=0\Rightarrow\left[{}\begin{matrix}x=\frac{7}{4}\\x=-\frac{5}{6}\end{matrix}\right.\)

c/

\(\Leftrightarrow16x^2-8x+1=\left(x-3\right)^2\)

\(\Leftrightarrow15x^2-2x-8=0\Rightarrow\left[{}\begin{matrix}x=\frac{4}{5}\\x=-\frac{2}{3}\end{matrix}\right.\)

d/ \(x\ge\frac{3}{2}\)

\(\Leftrightarrow\left(5x+1\right)^2=\left(2x-3\right)^2\)

\(\Leftrightarrow21x^2+22x-8=0\Rightarrow\left[{}\begin{matrix}x=\frac{2}{7}\\x=-\frac{4}{3}\end{matrix}\right.\)

NV
26 tháng 10 2019

e/

\(\Leftrightarrow\left[{}\begin{matrix}3x-4=x-2\\3x-4=2-x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=2\\4x=6\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=\frac{3}{2}\end{matrix}\right.\)

f/

\(\Leftrightarrow\left[{}\begin{matrix}3x^2-2x=6-x^2\\3x^2-2x=x^2-6\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4x^2-2x-6=0\\2x^2-2x+6=0\left(vn\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=\frac{3}{2}\end{matrix}\right.\)

g/

\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x=2x^2-x-2\\x^2-2x=-2x^2+x+2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+x-2=0\\3x^2-3x-2=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\\x=\frac{3\pm\sqrt{33}}{6}\\\end{matrix}\right.\)

a: =>|x+3|=|2x-1|

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=x+3\\2x-1=-x-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\3x=-2\end{matrix}\right.\Leftrightarrow x\in\left\{4;-\dfrac{2}{3}\right\}\)

b: \(\left|x^2-2x\right|=\left|2x^2-x-2\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}2x^2-x-2=x^2-2x\\2x^2-x-2=-x^2+2x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2+x-2=0\\3x^2+x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x+2\right)\left(x-1\right)=0\\\left(x+1\right)\left(3x-2\right)=0\end{matrix}\right.\Leftrightarrow x\in\left\{-2;1;-1;\dfrac{2}{3}\right\}\)

c: \(\left|3x^2-2x\right|=\left|6-x^2\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}3x^2-2x=6-x^2\\3x^2-2x=x^2-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x^2-2x-6=0\\2x^2-2x+6=0\end{matrix}\right.\)

\(\Leftrightarrow2x^2-x-3=0\)

\(\Leftrightarrow\left(2x-3\right)\left(x+1\right)=0\)

=>x=3/2 hoặc x=-1

d: \(\left|2x^2-3x-5\right|=\left|x^2-4x-5\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}2x^2-3x-5=x^2-4x-5\\2x^2-3x-5=4x+5-x^2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2+x=0\\3x^2-7x-10=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x\left(x+1\right)=0\\3x^2-10x+3x-10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\left(x+1\right)=0\\\left(3x-10\right)\left(x+1\right)=0\end{matrix}\right.\)

hay \(x\in\left\{\dfrac{10}{3};-1\right\}\)

e: |5x+1|=|2x-3|

\(\Leftrightarrow\left[{}\begin{matrix}5x+1=2x-3\\5x+1=-2x+3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-4\\7x=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{4}{3}\\x=\dfrac{2}{7}\end{matrix}\right.\)