\(x\frac{2x+\frac{x-1}{5}}{3}=1-\frac{3x-\frac{1-2x}{3}}{5}\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2016

- Ở câu a thì bạn chỉ cần quy đồng mẫu ở các vế cho bằng nhau, rồi bỏ mẫu. Bạn cứ thế mà thực hiện phép tính thôi.
- Còn câu b thì giải như vầy:

<=> \(\frac{x-23}{24}+\frac{x-23}{25}-\frac{x-23}{26}-\frac{x-23}{27}=0\)

<=>\(\left(x-23\right)\left(\frac{1}{24}+\frac{1}{25}+\frac{1}{26}+\frac{1}{27}\right)=0\)

Vì \(\left(\frac{1}{24}+\frac{1}{25}+\frac{1}{26}+\frac{1}{27}\right)\ne0\) 

<=> \(x-23=0\)

<=>\(x=23\)

Vậy phương trình có tập nghiệm: \(S=\left\{23\right\}\)

13 tháng 1 2016

chuyen ve nhom x-23 la nhan tu chung

7 tháng 1 2016

bạn giúp mình giải 3 câu này nhé

 

Câu 6. Giải các phương trình sau: a, x+\(\frac{2x+\frac{x-1}{5}}{3}=1-\frac{3x-\frac{1-2x}{3}}{5}\); b, \(\frac{3x-1-\frac{x-1}{2}}{3}-\frac{2x+\frac{1-2x}{3}}{2}=\frac{\frac{3x-1}{2}}{5}-6\) Câu 7. Giải các phương trình sau: a, \(\frac{x-23}{24}+\frac{x-23}{25}=\frac{x-23}{26}+\frac{x-23}{27}\); b, \(\left(\frac{x+2}{98}+1\right)+\left(\frac{x+3}{97}+1\right)=\left(\frac{x+4+++==}{96}+1\right)+\left(\frac{x+5}{95}+1\right)\) c,...
Đọc tiếp

Câu 6. Giải các phương trình sau:

a, x+\(\frac{2x+\frac{x-1}{5}}{3}=1-\frac{3x-\frac{1-2x}{3}}{5}\); b, \(\frac{3x-1-\frac{x-1}{2}}{3}-\frac{2x+\frac{1-2x}{3}}{2}=\frac{\frac{3x-1}{2}}{5}-6\)

Câu 7. Giải các phương trình sau:

a, \(\frac{x-23}{24}+\frac{x-23}{25}=\frac{x-23}{26}+\frac{x-23}{27}\); b, \(\left(\frac{x+2}{98}+1\right)+\left(\frac{x+3}{97}+1\right)=\left(\frac{x+4+++==}{96}+1\right)+\left(\frac{x+5}{95}+1\right)\)

c, \(\frac{x+1}{2004}+\frac{x+2}{2003}=\frac{x+3}{2002}+\frac{x+4}{2001}\); d, \(\frac{201-6}{99}+\frac{203-6}{97}=\frac{205-x}{95}+3=0\)

e, \(\frac{x-45}{55}+\frac{x-47}{53}=\frac{x-55}{45}+\frac{x-53}{47}\); f, \(\frac{x+1}{9}+\frac{x+2}{8}=\frac{x+3}{7}+\frac{x+4}{6}\)

g, \(\frac{x+2}{98}+\frac{x+4}{96}=\frac{x+6}{94}+\frac{x+8}{92}\); h, \(\frac{2-x}{2002}-1=\frac{1-x}{2003}-\frac{x}{2004}\)

i, \(\frac{x^2-10x-29}{1971}+\frac{x^2-10x-27}{1973}=\frac{x^2-10x-1971}{29}+\frac{x^2-10x-1973}{27}\);

1
29 tháng 3 2020

Câu 6 :

a, Ta có : \(x+\frac{2x+\frac{x-1}{5}}{3}=1-\frac{3x-\frac{1-2x}{3}}{5}\)

=> \(\frac{15x}{15}+\frac{5\left(2x+\frac{x-1}{5}\right)}{15}=\frac{15}{15}-\frac{3\left(3x-\frac{1-2x}{3}\right)}{15}\)

=> \(15x+5\left(2x+\frac{x-1}{5}\right)=15-3\left(3x-\frac{1-2x}{3}\right)\)

=> \(15x+10x+\frac{5\left(x-1\right)}{5}=15-9x+\frac{3\left(1-2x\right)}{3}\)

=> \(15x+10x+x-1=15-9x+1-2x\)

=> \(15x+10x+x-1-15+9x-1+2x=0\)

=> \(37x-17=0\)

=> \(x=\frac{17}{37}\)

Vậy phương trình trên có nghiệm là \(S=\left\{\frac{17}{37}\right\}\)

Bài 7 :

a, Ta có : \(\frac{x-23}{24}+\frac{x-23}{25}=\frac{x-23}{26}+\frac{x-23}{27}\)

=> \(\frac{x-23}{24}+\frac{x-23}{25}-\frac{x-23}{26}-\frac{x-23}{27}=0\)

=> \(\left(x-23\right)\left(\frac{1}{24}+\frac{1}{25}-\frac{1}{26}-\frac{1}{27}\right)=0\)

=> \(x-23=0\)

=> \(x=23\)

Vậy phương trình trên có nghiệm là \(S=\left\{23\right\}\)

c, Ta có : \(\frac{x+1}{2004}+\frac{x+2}{2003}=\frac{x+3}{2002}+\frac{x+4}{2001}\)

=> \(\frac{x+1}{2004}+1+\frac{x+2}{2003}+1=\frac{x+3}{2002}+1+\frac{x+4}{2001}+1\)

=> \(\frac{x+2005}{2004}+\frac{x+2005}{2003}=\frac{x+2005}{2002}+\frac{x+2005}{2001}\)

=> \(\frac{x+2005}{2004}+\frac{x+2005}{2003}-\frac{x+2005}{2002}-\frac{x+2005}{2001}=0\)

=> \(\left(x+2005\right)\left(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\right)=0\)

=> \(x+2005=0\)

=> \(x=-2005\)

Vậy phương trình trên có nghiệm là \(S=\left\{-2005\right\}\)

e, Ta có : \(\frac{x-45}{55}+\frac{x-47}{53}=\frac{x-55}{45}+\frac{x-53}{47}\)

=> \(\frac{x-45}{55}-1+\frac{x-47}{53}-1=\frac{x-55}{45}-1+\frac{x-53}{47}-1\)

=> \(\frac{x-100}{55}+\frac{x-100}{53}=\frac{x-100}{45}+\frac{x-100}{47}\)

=> \(\frac{x-100}{55}+\frac{x-100}{53}-\frac{x-100}{45}-\frac{x-100}{47}=0\)

=> \(\left(x-100\right)\left(\frac{1}{55}+\frac{1}{53}-\frac{1}{45}-\frac{1}{47}\right)=0\)

=> \(x-100=0\)

Vậy phương trình trên có nghiệm là \(S=\left\{100\right\}\)

22 tháng 3 2020

\(\left(x-23\right)\left(\frac{1}{24}+\frac{1}{25}\right)=\left(x-23\right)\left(\frac{1}{26}+\frac{1}{27}\right)\text{ nhận thấy:}\frac{1}{24}+\frac{1}{25}>\frac{1}{26}+\frac{1}{27}\)

\(\Rightarrow x-23=0\Leftrightarrow x=23\)

\(\frac{x+1}{2004}+\frac{x+2}{2003}=\frac{x+3}{2002}+\frac{x+4}{2001}\Rightarrow\left(\frac{x+1}{2004}+1\right)+\left(\frac{x+2}{2003}+1\right)=\left(\frac{x+3}{2002}+1\right)+\left(\frac{x+4}{2001}+1\right)\)

\(\frac{x+2005}{2004}+\frac{x+2005}{2003}=\frac{x+2005}{2002}+\frac{x+2005}{2001}\text{dạng giống câu a rồi nha}\)

22 tháng 3 2020

\(\frac{201-x}{99}+\frac{203-x}{97}+\frac{205-x}{95}+3=\left(\frac{201-x}{99}+1\right)+\left(\frac{203-x}{97}+1\right)+\left(\frac{205-x}{95}+1\right)=0\)

\(\Leftrightarrow\frac{300-x}{99}+\frac{300-x}{97}+\frac{300-x}{95}=0\Leftrightarrow\left(300-x\right)\left(\frac{1}{99}+\frac{1}{97}+\frac{1}{95}\right)=0\Leftrightarrow300-x=0\)

Vậy: x=300

AH
Akai Haruma
Giáo viên
7 tháng 2 2020

a)

\(\frac{x-23}{24}+\frac{x-23}{25}=\frac{x-23}{26}+\frac{x-23}{27}\)

\(\Leftrightarrow (x-23)\left(\frac{1}{24}+\frac{1}{25}-\frac{1}{26}-\frac{1}{27}\right)=0\)

Dễ thấy: \(\frac{1}{24}>\frac{1}{26}; \frac{1}{25}>\frac{1}{27}\Rightarrow \frac{1}{24}+\frac{1}{25}-\frac{1}{26}-\frac{1}{27}>0\)

$\Rightarrow \frac{1}{24}+\frac{1}{25}-\frac{1}{26}-\frac{1}{27}\neq 0$

Do đó $x-23=0\Rightarrow x=23$

b)

PT \(\Leftrightarrow \frac{x+100}{98}+\frac{x+100}{97}=\frac{x+100}{96}+\frac{x+100}{95}\)

\(\Leftrightarrow (x+100)\left(\frac{1}{98}+\frac{1}{97}-\frac{1}{96}-\frac{1}{95}\right)=0\)

Dễ thấy: $\frac{1}{98}< \frac{1}{96}; \frac{1}{97}< \frac{1}{95}$

$\Rightarrow \frac{1}{98}+\frac{1}{97}-\frac{1}{96}-\frac{1}{95}< 0$ hay khác $0$

$\Rightarrow x+100=0\Rightarrow x=-100$

AH
Akai Haruma
Giáo viên
7 tháng 2 2020

c)

PT \(\Leftrightarrow \frac{x+1}{2004}+1+\frac{x+2}{2003}+1=\frac{x+3}{2002}+1+\frac{x+4}{2001}+1\)

\(\Leftrightarrow \frac{x+2005}{2004}+\frac{x+2005}{2003}=\frac{x+2005}{2002}+\frac{x+2005}{2001}\)

\(\Leftrightarrow (x+2005)\left(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\right)=0\)

Dễ thấy $\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}<0$ hay khác $0$

Do đó $x+2005=0\Rightarrow x=-2005$

d)

PT \(\Leftrightarrow \frac{201-x}{99}+1+\frac{203-x}{97}+1+\frac{205-x}{96}+1=0\)

\(\Leftrightarrow \frac{300-x}{99}+\frac{300-x}{97}+\frac{300-x}{96}=0\)

\(\Leftrightarrow (300-x)\left(\frac{1}{99}+\frac{1}{97}+\frac{1}{96}\right)=0\)

Dễ thấy \(\frac{1}{99}+\frac{1}{97}+\frac{1}{96}>0\) hay khác $0$

Do đó $300-x=0\Rightarrow x=300$

24 tháng 4 2019

a. \(\frac{x-23}{24}+\frac{x-23}{25}=\frac{x-23}{26}+\frac{x-23}{27}\)

\(\Leftrightarrow\left(x-23\right)\left(\frac{1}{24}+\frac{1}{25}-\frac{1}{26}-\frac{1}{27}\right)=0\)

\(\Leftrightarrow x=23\) (Vì \(\left(\frac{1}{24}+\frac{1}{25}-\frac{1}{26}-\frac{1}{27}\right)\ne0\) )

b. \(\left(\frac{x+2}{98}+1\right)+\left(\frac{x+3}{97}+1\right)=\left(\frac{x+4}{96}+1\right)+\left(\frac{x+5}{95}+1\right)\)

\(\Leftrightarrow\frac{x+100}{98}+\frac{x+100}{97}-\frac{x+100}{96}-\frac{x+100}{95}=0\)

\(\Leftrightarrow\left(x+100\right)\left(\frac{1}{98}+\frac{1}{97}-\frac{1}{96}-\frac{1}{95}\right)=0\)

\(\Leftrightarrow x=-100\) (Vì \(\left(\frac{1}{98}+\frac{1}{97}-\frac{1}{96}-\frac{1}{95}\right)\ne0\) )