Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2-x}{2001}-1=\frac{1-x}{2002}-\frac{x}{2003}\)
\(\Leftrightarrow\frac{2-x}{2001}+1=\frac{1-x}{2002}+1+\left(\frac{x}{2003}-1\right)\)
\(\Leftrightarrow\frac{2-x+2001}{2001}=\frac{1-x+2002}{2002}+\frac{x-2003}{2003}\)
\(\Leftrightarrow\frac{2003-x}{2001}=\frac{2003-x}{2002}+\frac{x-2003}{2003}\)
\(\Leftrightarrow\left(x-2003\right)\left(\frac{1}{2003}+\frac{1}{2001}-\frac{1}{2002}\right)=0\)
\(\Leftrightarrow x-2003=0\)\(\left(v\text{ì}\frac{1}{2003}+\frac{1}{2001}-\frac{1}{2002}\ne0\right)\)
\(\Leftrightarrow x=2003\)
Vậy \(S=\left\{2003\right\}\)
d)Ta có : \(\frac{2-x}{2001}-1=\frac{1-x}{2002}-\frac{x}{2003}\)
\(\Leftrightarrow\frac{2-x}{2001}+1-2=\frac{1-x}{2002}+1+1-\frac{x}{2003}-2\)\(\Leftrightarrow\frac{2003-x}{2001}=\frac{2003-x}{2002}+\frac{2003-x}{2003}\)
\(\Leftrightarrow\frac{2003-x}{2001}-\frac{2003-x}{2002}-\frac{2003-x}{2003}=0\)\(\Leftrightarrow\left(2003-x\right)\left(\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)
\(\Leftrightarrow2003-x=0\Leftrightarrow x=2003\)
Vậy phương trình có tập nghiệm S = { 2003 }
\(a)2x-3=4x+6\\ \Rightarrow2x=-9\\ \Rightarrow x=-\dfrac{9}{2}\\ c)x\left(x-1\right)+x\left(x+3\right)=0\\ \Rightarrow x^2-x+x^2+3x=0\\ \Rightarrow2x^2+2x=0\\ \Rightarrow2x\left(x+1\right)=0\\ \Rightarrow\left[{}\begin{matrix}2x=0\\x+1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
a/
\(\left(x-1\right)^2-\left(x+1\right)^2=2x-6\\ x^2-2x+1-\left(x^2+2x+1\right)=2x-6\\ \)
\(\Leftrightarrow x^2-2x+1-x^2-2x-1-2x+6=0\)
\(\Leftrightarrow6-6x=0\)
=> x=1
a/ 2x\(^{^{ }3}\)-3\(^{^{ }3}\)-2x\(^3\)-1\(^{^{ }3}\)=-28
b/x\(^{^{ }3}\)+2\(^{^{ }3}\)-x\(^3\)+2=10
c/3x\(^3\)+5\(^3\)-3x(3x\(^2\)-1)=3x\(^3\)+5\(^3\)-3x\(^3\)+3x=125+3x
d/ x\(^6\)-(x\(^3\)+1)(x\(^2\)-x+1)= x\(^6\)-(x\(^6\)-x\(^4\)+x\(^3\)+x\(^2\)-x+1)=x\(^4\)-x\(^3\)-x\(^2\)+x-1
a: Ta có: \(3x-\left(3x+2\right)=x+3\)
\(\Leftrightarrow x+3=-2\)
hay x=-5
b: Ta có: \(\dfrac{5x-1}{4}+\dfrac{2x-1}{3}=\dfrac{3x}{2}\)
\(\Leftrightarrow15x-3+8x-4=18x\)
\(\Leftrightarrow5x=7\)
hay \(x=\dfrac{7}{5}\)
a) \(22-x\left(1-4x\right)=\left(2x+3\right)^3\)
\(\Leftrightarrow22-x+4x^2=8x^3+36x^2+54x+27\)
\(\Leftrightarrow-x-54x+4x^2-36x^2-8x^3=-22+27\)
\(\Leftrightarrow-8x^3-32x^2-55x=5\Leftrightarrow-8x^3-32x^2-55x-5=0\)
Bn tự làm tiếp nhé
b) \(\frac{2x}{3}+\frac{2x-1}{6}=\frac{4-x}{3}\Leftrightarrow\frac{2.2x}{6}+\frac{2x-1}{6}=\frac{2\left(4-x\right)}{6}\)
\(\Leftrightarrow2.2x+2x-1=2\left(4-x\right)\Leftrightarrow4x+2x-1=8-2x\)
\(\Leftrightarrow6x-1=8-2x\Leftrightarrow8x=9\Leftrightarrow x=\frac{9}{8}\)
Vậy phương trình có tập nghiệm S ={9/8}
c) \(\frac{x-1}{2019}+\frac{x-2}{2018}=\frac{x-3}{2017}+\frac{x-4}{2016}\)
\(\Leftrightarrow\left(\frac{x-1}{2019}-1\right)+\left(\frac{x-2}{2018}-1\right)=\left(\frac{x-3}{2017}-1\right)+\left(\frac{x-4}{2016}-1\right)\)
\(\Leftrightarrow\frac{x-2020}{2019}+\frac{x-2020}{2018}-\frac{x-2020}{2017}-\frac{x-2020}{2016}=0\)
\(\Leftrightarrow\left(x-2020\right)\left(\frac{1}{2019}+\frac{1}{2018}+\frac{1}{2017}+\frac{1}{2016}\right)=0\)
Do \(\frac{1}{2019}+\frac{1}{2018}+\frac{1}{2017}+\frac{1}{2016}>0\)
Nên \(x-2020=0\Leftrightarrow x=2020\)