Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4.
ĐKXĐ: \(2cos^2x+sinx-1\ne0\)
\(\Leftrightarrow-2sin^2x+sinx+1\ne0\Rightarrow\left\{{}\begin{matrix}sinx\ne1\\sinx\ne-\frac{1}{2}\end{matrix}\right.\)
Khi đó pt tương đương:
\(\Leftrightarrow\frac{cosx-sin2x}{cos2x+sinx}=\sqrt{3}\)
\(\Leftrightarrow cosx-sin2x=\sqrt{3}cos2x+\sqrt{3}sinx\)
\(\Leftrightarrow cosx-\sqrt{3}sinx=\sqrt{3}cos2x+sin2x\)
\(\Leftrightarrow\frac{1}{2}cosx-\frac{\sqrt{3}}{2}sinx=\frac{\sqrt{3}}{2}cos2x+\frac{1}{2}sin2x\)
\(\Leftrightarrow cos\left(x+\frac{\pi}{3}\right)=cos\left(2x-\frac{\pi}{6}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{6}=x+\frac{\pi}{3}+k2\pi\\2x-\frac{\pi}{6}=-x-\frac{\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\left(loại\right)\\x=-\frac{\pi}{18}+\frac{k2\pi}{3}\end{matrix}\right.\)
3.
\(\Leftrightarrow cos7x+\sqrt{3}sin7x=sin5x+\sqrt{3}cos5x\)
\(\Leftrightarrow\frac{\sqrt{3}}{2}sin7x+\frac{1}{2}cos7x=\frac{1}{2}sin5x+\frac{\sqrt{3}}{2}cos5x\)
\(\Leftrightarrow sin\left(7x+\frac{\pi}{6}\right)=sin\left(5x+\frac{\pi}{3}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}7x+\frac{\pi}{6}=5x+\frac{\pi}{3}+k2\pi\\7x+\frac{\pi}{6}=\frac{2\pi}{3}-5x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{12}+k\pi\\x=\frac{\pi}{24}+\frac{k\pi}{6}\end{matrix}\right.\)
Giải phương trình:
1) \(tanx-cotx+3cot^22x=5\)
2) \(\frac{sin5x}{sinx}=\frac{cos5x}{cosx}+2cos4x-1\)
1/ ĐKXĐ: \(sin2x\ne0\Rightarrow x\ne\frac{k\pi}{2}\)
\(\frac{sinx}{cosx}-\frac{cosx}{sinx}+3cot^2x=5\Leftrightarrow\frac{sin^2x-cos^2x}{sinx.cosx}+3cot^2x=5\)
\(\Leftrightarrow\frac{-2cos2x}{sin2x}+3cot^22x=5\Leftrightarrow3cot^22x-2cot2x-5=0\)
\(\Rightarrow\left[{}\begin{matrix}cot2x=-1\\cot2x=\frac{5}{3}\end{matrix}\right.\) \(\Rightarrow...\)
b/ ĐKXĐ: \(sin2x\ne0\Rightarrow x\ne\frac{k\pi}{2}\)
\(\Leftrightarrow\frac{sin5x}{sinx}-\frac{cos5x}{cosx}=2cos4x-1\Leftrightarrow\frac{sin5x.cosx-cos5x.sinx}{sinx.cosx}=2cos4x-1\)
\(\Leftrightarrow\frac{sin\left(5x-x\right)}{\frac{1}{2}sin2x}=2cos4x-1\Leftrightarrow\frac{2sin4x}{sin2x}=2cos4x-1\)
\(\Leftrightarrow\frac{4sin2x.cos2x}{sin2x}=2\left(2cos^22x-1\right)-1\)
\(\Leftrightarrow4cos2x=4cos^22x-3\Leftrightarrow4cos^22x-4cos2x-3=0\)
\(\Rightarrow\left[{}\begin{matrix}cos2x=\frac{3}{2}>1\left(l\right)\\cos2x=-\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow...\)
Bài 7. a) sin 3x - cos 5x = 0 ⇔ cos 5x = sin 3x ⇔ cos 5x = cos ( - 3x) ⇔
b) tan 3x . tan x = 1 ⇔ . Điều kiện : cos 3x . cos x # 0.
Với điều kiện này phương trình tương đương với
cos 3x . cos x = sin 3x . sinx ⇔ cos 3x . cos x - sin 3x . sinx = 0 ⇔ cos 4x = 0.
Do đó
tan 3x . tan x = 1 ⇔
⇔ cos 2x = ⇔ cos 4x = 0
⇔
c/
Đặt \(3cosx-4sinx-6=t\)
Pt trở thành:
\(t^2+2=-3t\Leftrightarrow t^2+3t+2=0\)
\(\Rightarrow\left[{}\begin{matrix}t=-1\\t=-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}3cosx-4sinx-6=-1\\3cosx-4sinx-6=-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3cosx-4sinx=5\\3cosx-4sinx=4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx.\frac{3}{5}-sinx.\frac{4}{5}=1\\cosx.\frac{3}{5}-sinx.\frac{4}{5}=\frac{4}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}cos\left(x+a\right)=1\\cosx\left(x+a\right)=\frac{4}{5}\end{matrix}\right.\) (với góc \(a\in\left[0;\pi\right]\) sao cho \(cosa=\frac{3}{5}\))
\(\Leftrightarrow\left[{}\begin{matrix}x+a=k2\pi\\x+a=\pm\left(\frac{\pi}{2}-a\right)+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-a+k2\pi\\x=-a\pm\left(\frac{\pi}{2}-a\right)+k2\pi\end{matrix}\right.\)
a/
\(\Leftrightarrow cosx.\frac{1}{2}-\frac{\sqrt{3}}{2}sinx=cos\left(\frac{\pi}{3}-x\right)\)
\(\Leftrightarrow cosx.cos\left(\frac{\pi}{3}\right)-sinx.sin\left(\frac{\pi}{3}\right)=cos\left(\frac{\pi}{3}-x\right)\)
\(\Leftrightarrow cos\left(x+\frac{\pi}{3}\right)=cos\left(\frac{\pi}{3}-x\right)\)
\(\Rightarrow\left[{}\begin{matrix}x+\frac{\pi}{3}=\frac{\pi}{3}-x+k2\pi\\x+\frac{\pi}{3}=-\frac{\pi}{3}+x+k2\pi\left(vn\right)\end{matrix}\right.\)
\(\Rightarrow x=k\pi\)
b/
\(\Leftrightarrow\sqrt{2}sin\left(5x+\frac{\pi}{4}\right)=\sqrt{2}cos13x\)
\(\Leftrightarrow cos\left(\frac{\pi}{4}-5x\right)=cos13x\)
\(\Leftrightarrow\left[{}\begin{matrix}13x=\frac{\pi}{4}-5x+k2\pi\\13x=-\frac{\pi}{4}+5x+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{72}+\frac{k\pi}{9}\\x=-\frac{\pi}{32}+\frac{k\pi}{4}\end{matrix}\right.\)
c/
\(\Leftrightarrow\sqrt{2}sin\left(3x-\frac{\pi}{4}\right)=\frac{\sqrt{3}}{\sqrt{2}}\)
\(\Leftrightarrow sin\left(3x-\frac{\pi}{4}\right)=\frac{\sqrt{3}}{2}\)
\(\Rightarrow\left[{}\begin{matrix}3x-\frac{\pi}{4}=\frac{\pi}{3}+k2\pi\\3x-\frac{\pi}{4}=\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{7\pi}{36}+\frac{k2\pi}{3}\\x=\frac{11\pi}{36}+\frac{k2\pi}{3}\end{matrix}\right.\)
d/
\(\Leftrightarrow2sinx.cosx+1-2sin^2x=1\)
\(\Leftrightarrow2sinx\left(cosx-sinx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\sinx=cosx\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{\pi}{4}+k\pi\end{matrix}\right.\)
a/
\(\Leftrightarrow\frac{\sqrt{3}}{2}sin5x-\frac{1}{2}cos5x=-1\)
\(\Leftrightarrow sin\left(5x-\frac{\pi}{6}\right)=-1\)
\(\Leftrightarrow5x-\frac{\pi}{6}=-\frac{\pi}{2}+k2\pi\)
\(\Leftrightarrow x=-\frac{\pi}{15}+\frac{k2\pi}{5}\)
b/
\(\Leftrightarrow\frac{1}{2}sinx-\frac{\sqrt{3}}{2}cosx=\frac{1}{2}\)
\(\Leftrightarrow sin\left(x-\frac{\pi}{3}\right)=\frac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{\pi}{3}=\frac{\pi}{6}+k2\pi\\x-\frac{\pi}{3}=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)
1.
\(\Leftrightarrow cos3x=-\frac{1}{2}\Leftrightarrow\left[{}\begin{matrix}x=40^0+k120^0\\x=-40^0+k120^0\end{matrix}\right.\)
\(\Rightarrow x=\left\{40^0;160^0;80^0\right\}\)
2.
Bạn coi lại đề, số \(-\sqrt{3}\) bên vế trái ko hề hợp lý, toán cho cấp 1 như vầy còn được chứ cấp 3 chắc ko ai cho đề kiểu vậy đâu
3.
\(\Leftrightarrow\sqrt{3}sin3x-cos3x=-sin5x-\sqrt{3}cos5x\)
\(\Leftrightarrow\frac{\sqrt{3}}{2}sin3x-\frac{1}{2}cos3x=-\left(\frac{1}{2}sin5x+\frac{\sqrt{3}}{2}cos5x\right)\)
\(\Leftrightarrow sin\left(3x-\frac{\pi}{6}\right)=sin\left(-5x-\frac{\pi}{3}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-\frac{\pi}{6}=-5x-\frac{\pi}{3}+k2\pi\\3x-\frac{\pi}{6}=\frac{4\pi}{3}+5x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{48}+\frac{k\pi}{4}\\x=-\frac{7\pi}{12}+k\pi\end{matrix}\right.\)