Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) <=> \(6x^2-5x+3-2x+3x\left(3-2x\right)=0\)
<=> \(6x^2-5x+3-2x+9x-6x^2=0\)
<=> \(2x+3=0\)
<=> \(x=\frac{-3}{2}\)
b) <=> \(10\left(x-4\right)-2\left(3+2x\right)=20x+4\left(1-x\right)\)
<=> \(10x-40-6-4x=20x+4-4x\)
<=> \(6x-46-16x-4=0\)
<=> \(-10x-50=0\)
<=> \(-10\left(x+5\right)=0\)
<=> \(x+5=0\)
<=> \(x=-5\)
c) <=> \(8x+3\left(3x-5\right)=18\left(2x-1\right)-14\)
<=> \(8x+9x-15=36x-18-14\)
<=> \(8x+9x-36x=+15-18-14\)
<=> \(-19x=-14\)
<=> \(x=\frac{14}{19}\)
d) <=>\(2\left(6x+5\right)-10x-3=8x+2\left(2x+1\right)\)
<=> \(12x+10-10x-3=8x+4x+2\)
<=> \(2x-7=12x+2\)
<=> \(2x-12x=7+2\)
<=> \(-10x=9\)
<=> \(x=\frac{-9}{10}\)
e) <=> \(x^2-16-6x+4=\left(x-4\right)^2\)
<=> \(x^2-6x-12-\left(x-4^2\right)=0\)
<=> \(x^2-6x-12-\left(x^2-8x+16\right)=0\)
<=> \(x^2-6x-12-x^2+8x-16=0\)
<=> \(2x-28=0\)
<=> \(2\left(x-14\right)=0\)
<=> x-14=0
<=> x=14

1.
\(\frac{2x+3}{4}-\frac{5x+3}{6}=\frac{3-4x}{12}\)
\(MC:12\)
Quy đồng :
\(\Rightarrow\frac{3.\left(2x+3\right)}{12}-\left(\frac{2.\left(5x+3\right)}{12}\right)=\frac{3x-4}{12}\)
\(\frac{6x+9}{12}-\left(\frac{10x+6}{12}\right)=\frac{3x-4}{12}\)
\(\Leftrightarrow6x+9-\left(10x+6\right)=3x-4\)
\(\Leftrightarrow6x+9-3x=-4-9+16\)
\(\Leftrightarrow-7x=3\)
\(\Leftrightarrow x=\frac{-3}{7}\)
2.\(\frac{3.\left(2x+1\right)}{4}-1=\frac{15x-1}{10}\)
\(MC:20\)
Quy đồng :
\(\frac{15.\left(2x+1\right)}{20}-\frac{20}{20}=\frac{2.\left(15x-1\right)}{20}\)
\(\Leftrightarrow15\left(2x+1\right)-20=2\left(15x-1\right)\)
\(\Leftrightarrow30x+15-20=15x-2\)
\(\Leftrightarrow15x=3\)
\(\Leftrightarrow x=\frac{3}{15}=\frac{1}{5}\)

c) \(\frac{x-3}{x-2}+\frac{x-2}{x-4}=1\) đặt x-2 =t " cho bé hệ số lại
ĐK : \(\left\{\begin{matrix}x\ne2\\x\ne4\end{matrix}\right.\Rightarrow\left\{\begin{matrix}t\ne0\\t\ne-2\end{matrix}\right.\)
\(\frac{t-1}{t}=\frac{t}{t-2}\Leftrightarrow\left(t-1\right)\left(t-2\right)=t^2\Leftrightarrow t^2-3t+2=t^2\Rightarrow-3t=-2\)
\(t=\frac{2}{3}\Rightarrow x=2+\frac{2}{3}=\frac{8}{3}\)
a) \(A=\frac{\left(x+2\right)^2}{2x-3}-1=\frac{x^2+10}{2x-3x}\) xem lại đề thấy cái mẫu VP vô duyên thế!
b) \(B=\frac{2}{x-1}+\frac{2x+3}{x^2+x+1}=\frac{\left(2x-1\right)\left(2x+1\right)}{x^3-1}\) MSC=(x^3-1)
\(B=\frac{2\left(x^2+x+1\right)+\left(2x+3\right)\left(x-1\right)-\left(4x^2-1\right)}{MSC}=\frac{\left(2x^2+2x+2\right)+\left(2x^2+x-3\right)-4x^2+1}{MSC}=0\)
\(B=0\Leftrightarrow\frac{3x}{MSC}=0=>x=0\) thảo mãn đk x khác 1
Kết luận: x=0 là nghiệm duy nhất.

1, Đk x≠2;-2
\(\frac{x+2}{2x-4}-\frac{4x}{x^2-4}=0\\ =>\frac{x+2}{2\left(x-2\right)}-\frac{4x}{\left(x-2\right).\left(x+2\right)}=0\\ =>\frac{\left(x+2\right)^2}{2\left(x^2-4\right)}-\frac{8x}{2\left(x-2\right).\left(x+2\right)}=0\\ =>\frac{x^2+4x+4-8x}{2\left(x-2\right)\left(x+2\right)}=0\\ =>\frac{x^2-4x+4}{2\left(x-2\right)\left(x+2\right)}=0\\ =>\frac{x-2}{2\left(x+2\right)}=0\\ =>x-2=0\\ =>x=2\left(loại\right)\)

a) \(\frac{x^2-2x+2}{x^2+x+1}-\frac{x^2}{x^2+x+1}=\frac{3}{\left(x^4+x^2+1\right)x}\)
\(\Leftrightarrow\frac{x^2-2x+2}{x^2-x+1}.x\left(x^2-x+1\right)\left(x^2+x+1\right)-\frac{x^2}{x^2+x+1}.x\left(x^2-x+1\right)\left(x^2+x+1\right)\)\(=\frac{3}{\left(x^4+x^2+1\right)x}.x\left(x^2-x+1\right)\left(x^2+x+1\right)\)
\(\Leftrightarrow x\left(x^2-2x+2\right)\left(x^2+x+1\right)\left(x^4+x^2+1\right)-x^3\left(x^2-x+1\right)\left(x^4+x^2+1\right)\)\(=3\left(x^2-x+1\right)\left(x^2+x+1\right)\)
\(\Rightarrow x=\frac{3}{2}\)
b) làm tương tự nhé
\(\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x^2-2x}\) \(\left(x\ne0,2\right)\)
\(\Leftrightarrow\frac{x\left(x+2\right)-x+2}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}\)
\(\Rightarrow x^2+2x-x+2-2=0\)
\(\Leftrightarrow x^2+x=0\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(loai\right)\\x=-1\left(t/m\right)\end{matrix}\right.\)
\(\frac{2x}{2x-1}+\frac{x}{2x+1}=1+\frac{4}{\left(2x-1\right)\left(2x+1\right)}\left(x\ne\overset{+}{-}\frac{1}{2}\right)\)
\(\Leftrightarrow\frac{2x\left(2x+1\right)+x\left(2x-1\right)}{\left(2x+1\right)\left(2x-1\right)}=\frac{4x^2-1+4}{\left(2x-1\right)\left(2x+1\right)}\)
\(\Rightarrow4x^2+2x+2x^2-x-4x^2-3=0\)
\(\Leftrightarrow2x^2+x-3=0\)
\(\Leftrightarrow2x^2+3x-2x-3=0\)
\(\Leftrightarrow\left(2x+3\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-\frac{3}{2}\\x=1\end{matrix}\right.\)
\(\frac{2x-1}{3}+x=\frac{x+4}{2}\)
\(\Leftrightarrow\frac{2x-1+3x}{3}=\frac{x+4}{2}\)
\(\Leftrightarrow2\left(5x-1\right)-3\left(x+4\right)=0\)
\(\Leftrightarrow10x-2-3x-12=0\)
\(\Leftrightarrow7x-14=0\Leftrightarrow x=2\)
\(\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x^2-2x}\)
\(\Rightarrow\frac{x\left(x+2\right)}{x\left(x-2\right)}-\frac{1\left(x-2\right)}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}\)
\(\Rightarrow x\left(x+2\right)-1\left(x-2\right)=2\)
\(\Rightarrow x^2+2x-x+2=2\)
\(\Rightarrow x^2+x=2-2\)
\(\Rightarrow x\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
tương tự
\(\)