Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình bày cách làm thôi nhé ... còn lại bạn tự làm :)
a) Đặt x2 + 2x = t
pt <=> t2 - 3t + 2 = 0
<=> ( t - 1 )( t - 2 ) = 0
<=> ( x2 + 2x - 1 )( x2 + 2x - 2 ) = 0
nghiệm hơi xấu nên không giải :v
b) ( x - 2 )4 + ( x + 2 )4 = 32 ( cái này khai triển ra luôn )
<=> x4 - 8x3 + 24x2 - 32x + 16 + x4 + 8x3 + 24x2 + 32x + 16 - 32 = 0
<=> 2x4 + 48x2 = 0
<=> 2x2( x2 + 24 ) = 0
<=> x = 0 ( đến đây bạn tự hiểu nhá :D )
c) ( x + 3 )4 + ( x + 5 )4 = 16
Đặt t = x + 4
pt <=> ( t - 1 )4 + ( t + 1 )4 - 16 = 0
khai triển rồi rút gọn đặt ẩn phụ là ra ( chắc bạn học đến rồi ha )
d) ( 6 - x )4 + ( 8 - x )4 = 80
Đặt t = 7 - x
pt <=> ( t - 1 )4 + ( t + 1 )4 - 80 = 0
tương tự như ý d)
Bài 1:
1.
\((x^2-6x)^2-2(x-3)^2+2=0\)
\(\Leftrightarrow (x^2-6x)^2-2(x^2-6x+9)+2=0\)
\(\Leftrightarrow (x^2-6x)^2-2(x^2-6x)-16=0\)
Đặt $x^2-6x=a$ thì pt trở thành:
$a^2-2a-16=0$
$\Leftrightarrow a=1\pm \sqrt{17}$
Nếu $a=1+\sqrt{17}$
$\Leftrightarrow x^2-6x=1+\sqrt{17}$
$\Leftrightarrow (x-3)^2=10+\sqrt{17}$
$\Rightarrow x=3\pm \sqrt{10+\sqrt{17}}$
Nếu $a=1-\sqrt{17}$
$\Rightarrow x=3\pm \sqrt{10-\sqrt{17}}$
Vậy.........
2.
$x^4-2x^3+x=2$
$\Leftrightarrow x^3(x-2)+(x-2)=0$
$\Leftrightarrow (x-2)(x^3+1)=0$
$\Leftrightarrow (x-2)(x+1)(x^2-x+1)=0$
Thấy rằng $x^2-x+1=(x-\frac{1}{2})^2+\frac{3}{4}>0$ nên $(x-2)(x+1)=0$
$\Rightarrow x=2$ hoặc $x=-1$
Vậy.......
Bài 2:
1.
ĐKXĐ: $x\neq 1$. Ta có:
\(x^2+(\frac{x}{x-1})^2=8\)
\(\Leftrightarrow x^2+(\frac{x}{x-1})^2+\frac{2x^2}{x-1}=8+\frac{2x^2}{x-1}\)
\(\Leftrightarrow (x+\frac{x}{x-1})^2=8+\frac{2x^2}{x-1}\)
\(\Leftrightarrow (\frac{x^2}{x-1})^2=8+\frac{2x^2}{x-1}\)
Đặt $\frac{x^2}{x-1}=a$ thì pt trở thành:
$a^2=8+2a$
$\Leftrightarrow (a-4)(a+2)=0$
Nếu $a=4\Leftrightarrow \frac{x^2}{x-1}=4$
$\Rightarrow x^2-4x+4=0\Leftrightarrow (x-2)^2=0\Rightarrow x=2$ (tm)
Nếu $a=-2\Leftrightarrow \frac{x^2}{x-1}=-2$
$x^2+2x-2=0\Rightarrow x=-1\pm \sqrt{3}$ (tm)
Vậy........
2. ĐKXĐ: $x\neq 0; 2$
$(\frac{x-1}{x})^2+(\frac{x-1}{x-2})^2=\frac{40}{49}$
$\Leftrightarrow (\frac{x-1}{x}+\frac{x-1}{x-2})^2-\frac{2(x-1)^2}{x(x-2)}=\frac{40}{49}$
$\Leftrightarrow 4\left[\frac{(x-1)^2}{x(x-2)}\right]^2-\frac{2(x-1)^2}{x(x-2)}=\frac{40}{49}$
Đặt $\frac{(x-1)^2}{x(x-2)}=a$ thì pt trở thành:
$4a^2-2a=\frac{40}{49}$
$\Rightarrow 2a^2-a-\frac{20}{49}=0$
$\Rightarrow a=\frac{7\pm \sqrt{209}}{28}$
$\Leftrightarrow 1+\frac{1}{x(x-2)}=\frac{7\pm \sqrt{209}}{28}$
$\Leftrightarrow \frac{1}{x(x-2)}=\frac{-21\pm \sqrt{209}}{28}$
$\Rightarrow x(x-2)=\frac{28}{-21\pm \sqrt{209}}$
$\Rightarrow (x-1)^2=\frac{7\pm \sqrt{209}}{-21\pm \sqrt{209}}$.
Dễ thấy $\frac{7+\sqrt{209}}{-21+\sqrt{209}}< 0$ nên vô lý
Do đó $(x-1)^2=\frac{7-\sqrt{209}}{-21-\sqrt{209}}$
$\Leftrightarrow x=1\pm \sqrt{\frac{7-\sqrt{209}}{-21-\sqrt{209}}}$
Vậy........
1) \(x^4-6x^3-x^2+54x-72=0\)
\(\Leftrightarrow x^3\left(x-2\right)-4x^2\left(x-2\right)-9x\left(x-2\right)+36\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-4x^2-9x+36\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x-4\right)-9\left(x-4\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x^2-9\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x-3\right)\left(x+3\right)=0\)
Tự làm nốt...
2) \(x^4-5x^2+4=0\)
\(\Leftrightarrow x^2\left(x^2-1\right)-4\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)
Tự làm nốt...
\(x^4-2x^3-6x^2+8x+8=0\)
\(\Leftrightarrow x^3\left(x-2\right)-6x\left(x-2\right)-4\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-6x-4\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+2\right)-2x\left(x+2\right)-2\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2-2x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left[\left(x-1\right)^2-\left(\sqrt{3}\right)^2\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-1-\sqrt{3}\right)\left(x-1+\sqrt{3}\right)=0\)
...
\(2x^4-13x^3+20x^2-3x-2=0\)
\(\Leftrightarrow2x^3\left(x-2\right)-9x^2\left(x-2\right)+2x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x^3-9x^2+2x+1\right)=0\)
Bí
a. 5-(x-6)=4(3-2x)
<=>5-x+6 = 12-8x
<=>-x+8x =-5-6+12
<=>7x=1
<=>x=\(\frac{1}{7}\)
Vậy phương trình có nghiệm là S= ( \(\frac{1}{7}\))
c.7 -(2x+4) =-(x+4)
<=> 7-2x-4=-x-4
<=>-2x+x= -7+4-4
<=> -x = -7
<=> x=7
Vậy phương trình có nghiệm là S=(7)
2/ (x2 + x + 1) (x2+ x + 2) = 12
đặt x2 + x = t
thay vào đc:
(t + 1) (t + 2) = 12
<=> t2 + 3t + 2 = 12
<=> t2 + 3t - 10 = 0
<=> t2 - 2t + 5t - 10 = 0
<=> t (t - 2) + 5 (t - 2) = 0
<=> (t + 5) (t - 2) = 0
=> {
t=−5 |
t=2 |
thay t đc:
*) x2 + x = -5 => x loại
*) x2 + x = 2 = x2 + x - 2 = x2 - 1 + x - 1 = (x - 1) (x + 1) + (x - 1) = (x - 1) (x + 2)
=> x = 1 hoặc x = - 2
S = {-2 ; 1}
3/ (x2 - 6x + 4)2 - 15(x2 - 6x + 10) = 1
đặt x2 - 6x + 4 = t
có: t2 - 15(t + 6) = 1
<=> t2 - 15t - 91 = 0
Câu 2 đặt ẩn phụ là x^2+x+2= a là đc
Câu 3 đặt ẩnphụ là x^2-6x+4= b là đc
a)(x-2)(x+2)(x^2-10)=72
<=>(x^2-4)(x^2-10)=72
<=>x^4-14x^2+40=72
<=>x^4-14x^2-32=0
<=>x^4-16x^2+2x^2-32=0
<=>x^2(x^2-16)+2(x^2-16)=0
<=>(x^2-16)(x^2+2)=0
<=>(x-4)(x+4)(x^2+2)=0
<=>x-4=0 hoac x+4=0 (vi x^2+2>0 voi moi x)
<=>x=4,x=-4
S={4,-4}
a)(x-2))x+2)(x^2-10)=72
=(x^2-4)(x^2-10)=72
Đặt x^2-7 là t
Phương trình trở thành (t+3)(t-3)=72
t^2-9=72
t^2=81
suy ra t= cộng trừ 9
*t=9
x^2-7=9
x^2=16
suy ra x=cộng trừ 4
*t=-9
x^2-7=-9
x^2=-2
suy ra x không xác định
vậy S={cộng trừ 4}