K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2017

a) Đặt t = cos, t ∈ [-1 ; 1] thì phương trình trở thành

(1 - t2) - 2t + 2 = 0 ⇔ t2 + 2t -3 = 0 ⇔

Phương trình đã cho tương đương với

cos = 1 ⇔ = k2π ⇔ x = 4kπ, k ∈ Z.

b) Đặt t = sinx, t ∈ [-1 ; 1] thì phương trình trở thành

8(1 - t2) + 2t - 7 = 0 ⇔ 8t2 - 2t - 1 = 0 ⇔ t ∈ {}.

Các nghiệm của phương trình đã cho là nghiệm của hai phương trình sau :

Đáp số : x = + k2π; x = + k2π;

x = arcsin() + k2π; x = π - arcsin() + k2π, k ∈ Z.

c) Đặt t = tanx thì phương trình trở thành 2t2 + 3t + 1 = 0 ⇔ t ∈ {-1 ; }.

Vậy

d) Đặt t = tanx thì phương trình trở thành

t - + 1 = 0 ⇔ t2 + t - 2 = 0 ⇔ t ∈ {1 ; -2}.

Vậy



17 tháng 5 2017

Phương trình đưa về đa thức của một hàm lượng giác

Phương trình đưa về đa thức của một hàm lượng giác

Phương trình đưa về đa thức của một hàm lượng giác

Phương trình đưa về đa thức của một hàm lượng giác

NV
4 tháng 10 2020

1.

\(\Leftrightarrow3x=k\pi\Leftrightarrow x=\frac{k\pi}{3}\)

2.

\(\Leftrightarrow cos5x=0\Leftrightarrow5x=\frac{\pi}{2}+k\pi\Leftrightarrow x=\frac{\pi}{10}+\frac{k\pi}{5}\)

4.

\(cos3x+cosx+cos2x=0\)

\(\Leftrightarrow2cos2x.cosx+cos2x=0\)

\(\Leftrightarrow cos2x\left(2cosx+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\cosx=-\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+\frac{k\pi}{2}\\x=\pm\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)

NV
4 tháng 10 2020

5.

\(sin6x+sin2x+sin4x=0\)

\(\Leftrightarrow2sin4x.cos2x+sin4x=0\)

\(\Leftrightarrow sin4x\left(2cos2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin4x=0\\cos2x=-\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{k\pi}{4}\\x=\pm\frac{\pi}{3}+k\pi\end{matrix}\right.\)

6. ĐKXĐ; ...

\(\Leftrightarrow tanx+tan2x=1-tanx.tan2x\)

\(\Leftrightarrow\frac{tanx+tan2x}{1-tanx.tan2x}=1\)

\(\Leftrightarrow tan3x=1\)

\(\Leftrightarrow x=\frac{\pi}{12}+\frac{k\pi}{3}\)

17 tháng 5 2017

Phương trình đưa về đa thức của một hàm lượng giác

Phương trình đưa về đa thức của một hàm lượng giác

6 tháng 12 2016

mai đăng lại bài này nhé t làm cho h đi ngủ

6 tháng 12 2016

NV
7 tháng 10 2020

a. ĐKXĐ: ...

\(\frac{sinx}{cosx}+\frac{sin2x}{cos2x}+\frac{sin3x}{cos3x}=0\)

\(\Leftrightarrow\frac{sin2x.cosx+cos2x.sinx}{cosx.cos2x}+\frac{sin3x}{cos3x}=0\)

\(\Leftrightarrow\frac{sin3x}{cosx.cos2x}+\frac{sin3x}{cos3x}=0\)

\(\Leftrightarrow sin3x\left(\frac{cosx.cos2x+cos3x}{cosx.cos2x.cos3x}\right)=0\)

\(\Leftrightarrow sin3x\left(\frac{cosx\left(2cos^2x-1\right)+4cos^3x-3cosx}{cosx.cos2x.cos3x}\right)=0\)

\(\Leftrightarrow sin3x\left(\frac{6cos^2x-4}{cos2x.cos3x}\right)=0\)

\(\Leftrightarrow sin3x\left(\frac{3cos2x-1}{cos2x.cos3x}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin3x=0\\cos2x=\frac{1}{3}\end{matrix}\right.\)

NV
7 tháng 10 2020

b.

\(cos2x\left(2cos^22x-1\right)=\frac{1}{2}\)

\(\Leftrightarrow4cos^32x-2cos2x-1=0\)

Pt bậc 3 này ko giải được, chắc bạn ghi nhầm đề

c. ĐKXĐ: ...

\(\frac{cosx}{sinx}-\frac{sinx}{cosx}=cosx-sinx\)

\(\Leftrightarrow\frac{\left(cosx-sinx\right)\left(cosx+sinx\right)}{sinx.cosx}=cosx-sinx\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx-sinx=0\Rightarrow x=...\\\frac{cosx+sinx}{sinx.cosx}=1\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow cosx+sinx=sinx.cosx\)

Đặt \(sinx+cosx=t\Rightarrow\left\{{}\begin{matrix}\left|t\right|\le\sqrt{2}\\sinx.cosx=\frac{t^2-1}{2}\end{matrix}\right.\)

\(\Rightarrow t=\frac{t^2-1}{2}\Rightarrow t^2-2t-1=0\Rightarrow\left[{}\begin{matrix}t=1+\sqrt{2}\left(l\right)\\t=1-\sqrt{2}\end{matrix}\right.\)

\(\Rightarrow\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=1-\sqrt{2}\Rightarrow sin\left(x+\frac{\pi}{4}\right)=\frac{1-\sqrt{2}}{\sqrt{2}}\Rightarrow x=...\)

NV
22 tháng 8 2020

5.

\(\Leftrightarrow sin\left(2cosx\right)=1\)

\(\Leftrightarrow2cosx=\frac{\pi}{2}+k2\pi\)

\(\Leftrightarrow cosx=\frac{\pi}{4}+k\pi\)

Do \(-1\le cosx\le1\Rightarrow-1\le\frac{\pi}{4}+k\pi\le1\)

\(k\in Z\Rightarrow k=0\)

\(\Rightarrow cosx=\frac{\pi}{4}\)

\(\Leftrightarrow x=\pm arccos\left(\frac{\pi}{4}\right)+k2\pi\)

NV
22 tháng 8 2020

3.

\(\Leftrightarrow sin2x+1=2\left(\frac{1-cos2x}{2}\right)\)

\(\Leftrightarrow sin2x+cos2x=0\)

\(\Leftrightarrow\sqrt{2}sin\left(2x+\frac{\pi}{4}\right)=0\)

\(\Leftrightarrow2x+\frac{\pi}{4}=k\pi\)

\(\Leftrightarrow x=-\frac{\pi}{8}+\frac{k\pi}{2}\)

4. ĐKXĐ; ...

\(\Leftrightarrow\frac{sinx.cos2x}{cosx.sin2x}+1=0\)

\(\Leftrightarrow sinx.cos2x+cosx.sin2x=0\)

\(\Leftrightarrow sin3x=0\)

\(\Leftrightarrow3sinx-4sin^3x=0\)

\(\Leftrightarrow3-4sin^2x=0\)

\(\Leftrightarrow3-2\left(1-cos2x\right)=0\)

\(\Leftrightarrow cos2x=-\frac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{3}+k\pi\\x=-\frac{\pi}{3}+k\pi\end{matrix}\right.\)