\(sin^23x-cos^2x=0\)

b)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
4 tháng 7 2019

Lời giải:

a)

\(\sin ^23x-\cos ^2x=0\Leftrightarrow (\sin 3x-\cos x)(\sin 3x+\cos x)=0\Rightarrow \left[\begin{matrix} \sin 3x=\cos x\\ \sin 3x=-\cos x\end{matrix}\right.\)

Nếu \(\sin 3x=\cos x=\sin (\frac{\pi}{2}-x)\)

\(\Rightarrow \left[\begin{matrix} 3x=\frac{\pi}{2}-x+2k\pi \\ 3x=\pi -(\frac{\pi}{2}-x)+2k\pi \end{matrix}\right.\) \(\Leftrightarrow \left[\begin{matrix} x=\frac{\pi}{8}+\frac{k}{2}\pi \\ x=\frac{\pi}{4}+k\pi \end{matrix}\right.\)

Nếu \(\sin 3x=-\cos x=\cos (\pi -x)=\sin (x-\frac{\pi}{2})\)

\(\Rightarrow \left[\begin{matrix} 3x=x-\frac{\pi}{2}+2k\pi \\ 3x=\pi -(x-\frac{\pi}{2})+2k\pi \end{matrix}\right.\) \(\Leftrightarrow \left[\begin{matrix} x=-\frac{\pi}{4}+k\pi \\ x=\frac{3}{8}\pi+\frac{k}{2}\pi \end{matrix}\right.\)

b)

\(8\cos ^3x-1=0\Rightarrow \cos x=\frac{1}{2}=\cos (\frac{\pi}{3})\)

\(\Rightarrow \left[\begin{matrix} x=\frac{\pi}{3}+2k\pi \\ x=\frac{-\pi}{3} +2k\pi \end{matrix}\right.\)

c) Dễ thấy \(\tan x, \cot x\neq 0\)

\(\tan x-2\cot x+1=0\Leftrightarrow \tan x-\frac{2}{\tan x}+1=0\)

\(\Leftrightarrow \tan ^2x+\tan x-2=0\)

\(\Leftrightarrow (\tan x+2)(\tan x-1)=0\Rightarrow \left[\begin{matrix} \tan x=-2\\ \tan x=1\end{matrix}\right.\)

Nếu \(\tan x=-2\Rightarrow x=\tan ^{-1}(-2)+k\pi \)

Nếu \(\tan x=1\Rightarrow x=\tan ^{-1}(1)+k\pi =\frac{\pi}{4}+k\pi \)

NV
24 tháng 7 2020

d/

ĐKXĐ: ...

Biến đôi biểu thức vế trái trước:

\(1+tanx.tan\frac{x}{2}=1+\frac{sinx.sin\frac{x}{2}}{cosx.cos\frac{x}{2}}=\frac{sinx.sin\frac{x}{2}+cosx.cos\frac{x}{2}}{cosx.cos\frac{x}{2}}=\frac{cos\left(x-\frac{x}{2}\right)}{cosx.cos\frac{x}{2}}=\frac{1}{cosx}\)

Do đó pt tương đương:

\(\sqrt{3}\left(1+tan^2x\right)-tanx-2\sqrt{3}=sinx.\frac{1}{cosx}\)

\(\Leftrightarrow\sqrt{3}tan^2x-2tanx-\sqrt{3}=0\)

\(\Rightarrow\left[{}\begin{matrix}tanx=\sqrt{3}\\tanx=-\frac{1}{\sqrt{3}}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{3}+k\pi\\x=-\frac{\pi}{6}+k\pi\end{matrix}\right.\)

Sử dụng kết quả biến đổi trên làm câu c sẽ lẹ hơn cách cũ

NV
24 tháng 7 2020

c/

ĐKXĐ: ...

\(\Leftrightarrow2cos^2x\left(1+tanx.tan\frac{x}{2}\right)=2cos^2x-4\)

\(\Leftrightarrow2cos^2x+2cos^2x.tanx.tan\frac{x}{2}=2cos^2x-4\)

\(\Leftrightarrow cos^2x.tanx.tan\frac{x}{2}=-2\)

\(\Leftrightarrow sinx.cosx.tan\frac{x}{2}=-2\)

\(\Leftrightarrow sinx.cosx.\frac{sin\frac{x}{2}}{cos\frac{x}{2}}=-2\)

\(\Leftrightarrow sinx.cosx.\frac{sin^2\frac{x}{2}}{2sin\frac{x}{2}.cos\frac{x}{2}}=-1\)

\(\Leftrightarrow cosx\left(\frac{1-cosx}{2}\right)=-1\)

\(\Leftrightarrow cos^2x-cosx-2=0\Rightarrow\left[{}\begin{matrix}cosx=-1\\cosx=2\left(l\right)\end{matrix}\right.\)

\(\Rightarrow x=\pi+k2\pi\)

NV
25 tháng 7 2020

e/

\(\Leftrightarrow3\left(1-cos6x\right)-\left(2cos^26x-1\right)=4\)

\(\Leftrightarrow-2cos^26x-3cos6x=0\)

\(\Leftrightarrow cos6x\left(2cos6x+3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}cos6x=0\\cos6x=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow6x=\frac{\pi}{2}+k2\pi\)

\(\Rightarrow x=\frac{\pi}{12}+\frac{k\pi}{3}\)

NV
25 tháng 7 2020

d/

\(\Leftrightarrow3\left(1-cos2x\right)-2\left(1-cos^22x\right)=5\)

\(\Leftrightarrow2cos^22x-3cos2x-4=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=\frac{3+\sqrt{41}}{4}\left(l\right)\\cos2x=\frac{3-\sqrt{41}}{4}\end{matrix}\right.\)

\(\Rightarrow x=\pm\frac{1}{2}arccos\left(\frac{3-\sqrt{41}}{4}\right)+k\pi\)

Nghiệm xấu quá :(

AH
Akai Haruma
Giáo viên
24 tháng 7 2020

m)

$\sin 4x-\cos ^4x=\cos x-2$

$\Leftrightarrow (\sin ^2x+\cos ^2x)(\sin ^2x-\cos ^2x)=\cos x-2$

$\Leftrightarrow \sin ^2x-\cos ^2x=\cos x-2$

$\Leftrightarrow 1-2\cos ^2x=\cos x-2$

$\Leftrightarrow 2\cos ^2x+\cos x-3=0$

$\Leftrightarrow (2\cos x+3)(\cos x-1)=0$

Nếu $2\cos x+3=0\Rightarrow \cos x=\frac{-3}{2}< -1$ (loại)

Nếu $\cos x-1=0\Rightarrow \cos x=1\Rightarrow x=2k\pi$ với $k$ nguyên

AH
Akai Haruma
Giáo viên
24 tháng 7 2020

k) ĐK:.......

$\tan ^25x=\frac{1}{3}\Rightarrow \tan 5x=\pm \sqrt{\frac{1}{3}}$

$\Rightarrow 5x=k\pi +\tan ^{-1}\frac{\pm 1}{\sqrt{3}}$

$\Rightarrow x=frac{k}{5}\pi +\tan ^{-1}\frac{\pm 1}{\sqrt{3}}$ với $k$ nguyên.

Số đẹp hơn thì có thể giải như sau:

$PT \Leftrightarrow \frac{\sin ^25x}{\cos ^25x}=\frac{1}{3}$

$\Rightarrow 3\sin ^25x=\cos ^25x$

$\Rightarrow 4\\sin ^25x=1\Rightarrow \sin 5x=\pm \frac{1}{2}$

$\Rightarrow x=\frac{k\pi}{5}\pm \frac{\pi}{30}$ với $k$ nguyên.

19 tháng 8 2019
https://i.imgur.com/KATLCup.jpg
19 tháng 8 2019
https://i.imgur.com/C3DgdmP.jpg
17 tháng 5 2017

Phương trình đưa về đa thức của một hàm lượng giác

Phương trình đưa về đa thức của một hàm lượng giác

3 tháng 4 2017

a) 2cos2x - 3cosx + 1 = 0 (1)

Đặt : t = cosx với điều kiện -1 \(\le t\le1\)

(1)\(\Leftrightarrow\) 2t2 - 3t + 1= 0

\(\Leftrightarrow\left[{}\begin{matrix}t=1\\t=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}cosx=1\\cosx=\dfrac{1}{2}=cosx\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\left(k\in Z\right)}\)

22 tháng 5 2017

a) Đkxđ: D = R
Đặt \(cosx=t;\left|t\right|\le1\). Phương trình trở thành:m\(2t^2-3t+1=0\Leftrightarrow\left[{}\begin{matrix}t=1\left(tm\right)\\t=\dfrac{1}{2}\left(tm\right)\end{matrix}\right.\).
Với \(t=1\) ta có \(cosx=1\)\(\Leftrightarrow x=k2\pi\).
Với \(t=\dfrac{1}{2}\) ta có \(cosx=\dfrac{1}{2}\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+k2\pi\\x=-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\).
Vậy phương trình có 3 họ nghiệm là:
- \(x=k2\pi\);
- \(x=\dfrac{\pi}{3}+k2\pi\);
- \(x=-\dfrac{\pi}{3}+k2\pi\).

28 tháng 7 2019
https://i.imgur.com/mVqlQRs.jpg
28 tháng 7 2019
https://i.imgur.com/tXKeJRL.jpg