Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1a.
ĐKXĐ: \(x\ne\left\{1;3\right\}\)
\(\Leftrightarrow\dfrac{6}{x-1}=\dfrac{4}{x-3}+\dfrac{4}{x-3}\)
\(\Leftrightarrow\dfrac{3}{x-1}=\dfrac{4}{x-3}\Leftrightarrow3\left(x-3\right)=4\left(x-1\right)\)
\(\Leftrightarrow3x-9=4x-4\Rightarrow x=-5\)
b.
ĐKXĐ: \(x\ne\left\{-1;2\right\}\)
\(\Leftrightarrow\dfrac{5}{x+1}=\dfrac{3}{2-x}+\dfrac{1}{2-x}\)
\(\Leftrightarrow\dfrac{5}{x+1}=\dfrac{4}{2-x}\Leftrightarrow5\left(2-x\right)=4\left(x+1\right)\)
\(\Leftrightarrow10-2x=4x+4\Leftrightarrow6x=6\Rightarrow x=1\)
1c.
ĐKXĐ: \(x\ne\left\{2;5\right\}\)
\(\Leftrightarrow\dfrac{3x\left(x-5\right)}{\left(x-2\right)\left(x-5\right)}-\dfrac{x\left(x-2\right)}{\left(x-2\right)\left(x-5\right)}=\dfrac{-3x}{\left(x-2\right)\left(x-5\right)}\)
\(\Leftrightarrow3x\left(x-5\right)-x\left(x-2\right)=-3x\)
\(\Leftrightarrow2x^2-10x=0\Leftrightarrow2x\left(x-5\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=5\left(loại\right)\end{matrix}\right.\)
2a.
\(\Leftrightarrow-4x^2-5x+6=x^2+4x+4\)
\(\Leftrightarrow5x^2+9x-2=0\Rightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{5}\end{matrix}\right.\)
2b.
\(2x^2-6x+1=0\Rightarrow x=\dfrac{3\pm\sqrt{7}}{2}\)
b) \(\dfrac{x-5}{2017}-1+\dfrac{x-2}{2020}-1=\dfrac{x-6}{2016}-1+\dfrac{x-68}{1954}-1\)
\(\dfrac{x-2022}{2017}+\dfrac{x-2002}{2020}=\dfrac{x-2022}{2016}+\dfrac{x-2022}{1954}\)
\(\Leftrightarrow\left(x-2022\right)\left(\dfrac{1}{2017}+\dfrac{1}{2020}-\dfrac{1}{2016}-\dfrac{1}{1954}\right)=0\)
\(\Leftrightarrow x-2022=0\left(\dfrac{1}{2017}+\dfrac{1}{2020}-\dfrac{1}{2016}-\dfrac{1}{1954}\ne0\right)\)
\(\Leftrightarrow x=2022\)
b) \(\frac{x-5}{2017}+\frac{x-2}{2020}=\frac{x-6}{2016}+\frac{x-68}{1954}\)
\(\Leftrightarrow\)\(\frac{x-5}{2017}-1+\frac{x-2}{2020}-1=\frac{x-6}{2016}-1+\frac{x-68}{1954}-1\)
\(\Leftrightarrow\)\(\frac{x-2022}{2017}+\frac{x-2022}{2020}=\frac{x-2022}{2016}+\frac{x-2022}{1954}\)
\(\Leftrightarrow\)\(\left(x-2022\right)\left(\frac{1}{2017}+\frac{1}{2020}-\frac{1}{2016}-\frac{1}{1954}\right)=0\)
\(\Leftrightarrow\)\(x-2022=0\) (vì 1/2017 + 1/2020 - 1/2016 - 1/1954 \(\ne0\))
\(\Leftrightarrow\)\(x=2022\)
Vậy...
b) \(\frac{x-5}{2017}+\frac{x-2}{2020}=\frac{x-6}{2016}+\frac{x-68}{1954}\)
\(\Leftrightarrow\)\(\frac{x-5}{2017}-1+\frac{x-2}{2020}-1=\frac{x-6}{2016}-1+\frac{x-68}{1954}-1\)
\(\Leftrightarrow\)\(\frac{x-2022}{2017}+\frac{x-2022}{2020}=\frac{x-2022}{2016}+\frac{x-2022}{1954}\)
\(\Leftrightarrow\)\(\left(x-2022\right)\left(\frac{1}{2017}+\frac{1}{2020}-\frac{1}{2016}-\frac{1}{1954}\right)=0\)
\(\Leftrightarrow\)\(x-2022=0\) (vì 1/2017 + 1/2020 - 1/2016 - 1/1954 \(\ne0\))
\(\Leftrightarrow\)\(x=2022\)
Vậy,....
a) ĐKXĐ: \(x\ne0\)
Ta có: \(\dfrac{3x^2+7x-10}{x}=0\)
Suy ra: \(3x^2+7x-10=0\)
\(\Leftrightarrow3x^2-3x+10x-10=0\)
\(\Leftrightarrow3x\left(x-1\right)+10\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(3x+10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\3x+10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\3x=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{10}{3}\end{matrix}\right.\)
Vậy: \(S=\left\{1;-\dfrac{10}{3}\right\}\)
a/ \(\dfrac{3x^2+7x-10}{x}=0\)
\(< =>3x^2+7x-10=0\)
\(< =>3x^2+10x-3x-10=0\)
\(< =>\left(3x^2+10x\right)-\left(3x+10\right)=0\)
\(< =>x\left(3x+10\right)-\left(3x+10\right)=0\)
\(< =>\left(3x+10\right)\left(x-1\right)=0\)
\(=>\left\{{}\begin{matrix}3x+10=0=>x=-\dfrac{10}{3}\\x-1=0=>x=1\end{matrix}\right.\)
Vậy tập nghiệm của .....
`a,` \(\dfrac{5x+2}{6}-\dfrac{8x-1}{3}=\dfrac{4x+2}{5}-5\)
`<=> (5(5x+2))/30 - (10(8x-1))/30 = (6(4x+2))/30 - (5.30)/30`
`<=> 5(5x+2) - 10(8x-1) =6(4x+2) - 5.30`
`<=> 25x + 10 - 80x + 10 = 24x+12 - 150`
`<=> -55x +20 = 24x-138`
`<=> -55x -24x=-138-20`
`<=>-79x=-158`
`<=> x=2`
Vậy pt có nghiệm `x=2`
`b,` \(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}\)
ĐKXĐ : \(\left\{{}\begin{matrix}x-2\ne0\\x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne2\\x\ne0\end{matrix}\right.\)
Ta có : `(x+2)/(x-2) -1/x = 2/(x(x-2))`
`<=> (x(x+2))/(x(x-2)) - (x-2)/(x(x-2)) = 2/(x(x-2))`
`=> x^2 +2x - x +2 = 2`
`<=> x^2 + x =0`
`<=>x(x+1)=0`
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(l\right)\\x=-1\end{matrix}\right.\)
Vậy pt có nghiệm `x=-1`
`c,2x^3 + 6x^2 =x^2 +3x`
`<=> 2x^3 + 6x^2 -x^2 -3x=0`
`<=> 2x^3 + 5x^2 -3x=0`
`->` Đề có sai ko ạ ?
`d,` \(\left|x-4\right|+3x=5\) `(1)`
Thường hợp `1` : `x-4 >= 0<=> x >=0` thì phương trình `(1)` thở thành :
`x-4 = 5-3x`
`<=> x+3x=5+4`
`<=> 4x=9`
`<=> x= 9/4 (t//m)`
Trường hợp `2` : `x-4< 0<=> x<0` thì phương trình `(1)` trở thành :
`-(x-4) =5-3x`
`<=> -x +4=5-3x`
`<=> -x+3x=5-4`
`<=> 2x =1`
`<=>x=1/2 ( kt//m)`
Vậy phương trình có nghiệm `x=9/4`
a: Ta có: \(3x-\left(3x+2\right)=x+3\)
\(\Leftrightarrow x+3=-2\)
hay x=-5
b: Ta có: \(\dfrac{5x-1}{4}+\dfrac{2x-1}{3}=\dfrac{3x}{2}\)
\(\Leftrightarrow15x-3+8x-4=18x\)
\(\Leftrightarrow5x=7\)
hay \(x=\dfrac{7}{5}\)
a: Ta có: \(4x-2\left(1-x\right)=5\left(x-4\right)\)
\(\Leftrightarrow4x-2+2x=5x-20\)
\(\Leftrightarrow x=-18\)
b: Ta có: \(\dfrac{x}{6}+\dfrac{1-3x}{9}=\dfrac{-x+1}{12}\)
\(\Leftrightarrow6x+4\left(1-3x\right)=3\left(-x+1\right)\)
\(\Leftrightarrow6x+4-12x=-3x+3\)
\(\Leftrightarrow-3x=-1\)
hay \(x=\dfrac{1}{3}\)
c: Ta có: \(\left(x+2\right)^2-3\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=1\end{matrix}\right.\)
\(1.\dfrac{x-1}{3}-x=\dfrac{2x-4}{4}.\Leftrightarrow\dfrac{x-1-3x}{3}=\dfrac{x-2}{2}.\Leftrightarrow\dfrac{-2x-1}{3}-\dfrac{x-2}{2}=0.\)
\(\Leftrightarrow\dfrac{-4x-2-3x+6}{6}=0.\Rightarrow-7x+4=0.\Leftrightarrow x=\dfrac{4}{7}.\)
\(2.\left(x-2\right)\left(2x-1\right)=x^2-2x.\Leftrightarrow\left(x-2\right)\left(2x-1\right)-x\left(x-2\right)=0.\)
\(\Leftrightarrow\left(x-2\right)\left(2x-1-x\right)=0.\Leftrightarrow\left(x-2\right)\left(x-1\right)=0.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2.\\x=1.\end{matrix}\right.\)
\(3.3x^2-4x+1=0.\Leftrightarrow\left(x-1\right)\left(x-\dfrac{1}{3}\right)=0.\Leftrightarrow\left[{}\begin{matrix}x=1.\\x=\dfrac{1}{3}.\end{matrix}\right.\)
\(4.\left|2x-4\right|=0.\Leftrightarrow2x-4=0.\Leftrightarrow x=2.\)
\(5.\left|3x+2\right|=4.\Leftrightarrow\left[{}\begin{matrix}3x+2=4.\\3x+2=-4.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}.\\x=-2.\end{matrix}\right.\)
\(1,\dfrac{x-1}{3}-x=\dfrac{2x-4}{4}\\ \Leftrightarrow\dfrac{x-1}{3}-x=\dfrac{x-2}{2}\\ \Leftrightarrow\dfrac{2\left(x-1\right)-6x}{6}=\dfrac{3\left(x-2\right)}{6}\\ \Leftrightarrow2\left(x-1\right)-6x=3\left(x-2\right)\\ \Leftrightarrow2x-2-6x=3x-6\\ \Leftrightarrow-4x-2=3x-6\)
\(\Leftrightarrow3x-6+4x+2=0\\ \Leftrightarrow7x-4=0\\ \Leftrightarrow x=\dfrac{4}{7}\)
\(2,\left(x-2\right)\left(2x-1\right)=x^2-2x\\ \Leftrightarrow2x^2-4x-x+2=x^2-2x\\ \Leftrightarrow x^2-3x+2=0\\ \Leftrightarrow\left(x^2-2x\right)-\left(x-2\right)=0\\ \Leftrightarrow x\left(x-2\right)-\left(x-2\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
\(3,3x^2-4x+1=0\\ \Leftrightarrow\left(3x^2-3x\right)-\left(x-1\right)=0\\ \Leftrightarrow3x\left(x-1\right)-\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(3x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{3}\end{matrix}\right.\)
\(4,\left|2x-4\right|=0\\ \Leftrightarrow2x-4=0\\ \Leftrightarrow2x=4\\ \Leftrightarrow x=2\)
\(5,\left|3x+2\right|=4\\ \Leftrightarrow\left[{}\begin{matrix}3x+2=4\\3x+2=-4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}3x=2\\3x=-6\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-2\end{matrix}\right.\)
\(6,\left|2x-5\right|=\left|-x+2\right|\\ \Leftrightarrow\left[{}\begin{matrix}2x-5=-x+2\\2x-5=x-2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}3x=7\\x=3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=3\end{matrix}\right.\)
a) \(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2=0\)
\(\Rightarrow\left(x^2+4x+8\right)^2+2.\dfrac{3}{2}x\left(x^2+4x+8\right)+\dfrac{9}{4}x^2-\dfrac{1}{4}x^2=0\)
\(\Rightarrow\left(x^2+4x+8+\dfrac{3}{2}x\right)^2-\left(\dfrac{1}{2}x\right)^2=0\)
\(\Rightarrow\left(x^2+4x+8+\dfrac{3}{2}x-\dfrac{1}{2}x\right)\left(x^2+4x+8+\dfrac{3}{2}x+\dfrac{1}{2}x\right)=0\)
\(\Rightarrow\left(x^2+4x+8+x\right)\left(x^2+4x+8+2x\right)=0\)
\(\Rightarrow\left(x^2+5x+8\right)\left(x^2+6x+8\right)=0\)
\(\Rightarrow\left(x^2+5x+8\right)\left(x^2+2x+4x+8\right)=0\)
\(\Rightarrow\left(x^2+5x+8\right)\left[x\left(x+2\right)+4\left(x+2\right)\right]=0\)
\(\Rightarrow\left(x^2+5x+8\right)\left(x+2\right)\left(x+4\right)=0\)
Vì x2 ≥ 0 với mọi x
⇒ x2 + 5x + 8 ≥ 0 với mọi x
\(\Rightarrow\left(x+2\right)\left(x+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+2=0\\x+4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=-4\end{matrix}\right.\)
b) \(\dfrac{x-5}{2017}+\dfrac{x-2}{2020}=\dfrac{x-6}{2016}+\dfrac{x-68}{1954}\)
Trừ 2 vào mỗi vế ta có:
\(\Rightarrow\dfrac{x-5}{2017}-1+\dfrac{x-2}{2020}-1=\dfrac{x-6}{2016}-1+\dfrac{x-68}{1954}-1\)
\(\Rightarrow\dfrac{x-2022}{2017}+\dfrac{x-2022}{2020}-\dfrac{x-2022}{2016}-\dfrac{x-2022}{1954}=0\)
\(\Rightarrow\left(x-2022\right)\left(\dfrac{1}{2017}+\dfrac{1}{2020}-\dfrac{1}{2016}-\dfrac{1}{1954}\right)=0\)
Ta thấy \(\dfrac{1}{2017}+\dfrac{1}{2020}-\dfrac{1}{2016}-\dfrac{1}{1954}\ne0\)
\(\Rightarrow x-2022=0\Rightarrow x=2022\)
Chúc bạn học tốt!