Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a đúng là cú lừa, biến đổi logarit thì dễ, đến lúc nó ra pt vô tỉ theo x mới thấy vấn đề :D
a/ĐK: \(0< x< 1\)
\(2log_2x-log_2\left(1-\sqrt{x}\right)=log_2\left(x-2\sqrt{x}+2\right)\)
\(\Leftrightarrow log_2x^2-log_2\left(1-\sqrt{x}\right)=log_2\left(x-2\sqrt{x}+2\right)\)
\(\Leftrightarrow log_2\left(\dfrac{x^2}{1-\sqrt{x}}\right)=log_2\left(x-2\sqrt{x}+2\right)\)
\(\Leftrightarrow\dfrac{x^2}{1-\sqrt{x}}=x-2\sqrt{x}+2=x+2\left(1-\sqrt{x}\right)\)
Đặt \(1-\sqrt{x}=t\) (\(0< t< 1\)) \(\Rightarrow\dfrac{x^2}{t}=x+2t\)
\(\Leftrightarrow x^2-t.x-2t^2=0\) \(\Rightarrow\Delta=t^2+8t^2=9t^2\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{t+3t}{2}=2t\\x=\dfrac{t-3t}{2}=-t< 0\left(l\right)\end{matrix}\right.\)
\(\Rightarrow x=2\left(1-\sqrt{x}\right)\Rightarrow x+2\sqrt{x}-2=0\) \(\Rightarrow x=4-2\sqrt{3}\)
b/ĐK \(x>0\)
\(log_3\left(x-1\right)^2-log_3x+\left(x-1\right)^2=x\)
\(\Leftrightarrow log_3\left(x-1\right)^2+\left(x-1\right)^2=log_3x+x\)
Xét hàm \(f\left(t\right)=log_3t+t\) \(\left(t>0\right)\Rightarrow f'\left(t\right)=\dfrac{1}{t.ln3}+1>0\Rightarrow f\left(t\right)\) đồng biến
\(\Rightarrow f\left(t_1\right)=f\left(t_2\right)\Leftrightarrow t_1=t_2\)
\(\Rightarrow log_3\left(x-1\right)^2+\left(x-1\right)^2=log_3x+x\Leftrightarrow\left(x-1\right)^2=x\)
\(\Leftrightarrow x^2-3x+1=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{3+\sqrt{5}}{2}\\x=\dfrac{3-\sqrt{5}}{2}\end{matrix}\right.\)
Câu 1:
Để ý rằng \((2-\sqrt{3})(2+\sqrt{3})=1\) nên nếu đặt
\(\sqrt{2+\sqrt{3}}=a\Rightarrow \sqrt{2-\sqrt{3}}=\frac{1}{a}\)
PT đã cho tương đương với:
\(ma^x+\frac{1}{a^x}=4\)
\(\Leftrightarrow ma^{2x}-4a^x+1=0\) (*)
Để pt có hai nghiệm phân biệt \(x_1,x_2\) thì pt trên phải có dạng pt bậc 2, tức m khác 0
\(\Delta'=4-m>0\Leftrightarrow m< 4\)
Áp dụng hệ thức Viete, với $x_1,x_2$ là hai nghiệm của pt (*)
\(\left\{\begin{matrix} a^{x_1}+a^{x_2}=\frac{4}{m}\\ a^{x_1}.a^{x_2}=\frac{1}{m}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a^{x_2}(a^{x_1-x_2}+1)=\frac{4}{m}\\ a^{x_1+x_2}=\frac{1}{m}(1)\end{matrix}\right.\)
Thay \(x_1-x_2=\log_{2+\sqrt{3}}3=\log_{a^2}3\) :
\(\Rightarrow a^{x_2}(a^{\log_{a^2}3}+1)=\frac{4}{m}\)
\(\Leftrightarrow a^{x_2}(\sqrt{3}+1)=\frac{4}{m}\Rightarrow a^{x_2}=\frac{4}{m(\sqrt{3}+1)}\) (2)
\(a^{x_1}=a^{\log_{a^2}3+x_2}=a^{x_2}.a^{\log_{a^2}3}=a^{x_2}.\sqrt{3}\)
\(\Rightarrow a^{x_1}=\frac{4\sqrt{3}}{m(\sqrt{3}+1)}\) (3)
Từ \((1),(2),(3)\Rightarrow \frac{4}{m(\sqrt{3}+1)}.\frac{4\sqrt{3}}{m(\sqrt{3}+1)}=\frac{1}{m}\)
\(\Leftrightarrow \frac{16\sqrt{3}}{m^2(\sqrt{3}+1)^2}=\frac{1}{m}\)
\(\Leftrightarrow m=\frac{16\sqrt{3}}{(\sqrt{3}+1)^2}=-24+16\sqrt{3}\) (thỏa mãn)
Câu 2:
Nếu \(1> x>0\)
\(2017^{x^3}>2017^0\Leftrightarrow 2017^{x^3}>1\)
\(0< x< 1\Rightarrow \frac{1}{x^5}>1\)
\(\Rightarrow 2017^{\frac{1}{x^5}}> 2017^1\Leftrightarrow 2017^{\frac{1}{x^5}}>2017\)
\(\Rightarrow 2017^{x^3}+2017^{\frac{1}{x^5}}> 1+2017=2018\) (đpcm)
Nếu \(x>1\)
\(2017^{x^3}> 2017^{1}\Leftrightarrow 2017^{x^3}>2017 \)
\(\frac{1}{x^5}>0\Rightarrow 2017^{\frac{1}{x^5}}>2017^0\Leftrightarrow 2017^{\frac{1}{5}}>1\)
\(\Rightarrow 2017^{x^3}+2017^{\frac{1}{x^5}}>2018\) (đpcm)