K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2018

Logarit hóa hai vế theo cơ số 7, ta được:

x 2 + 2 x . log 7 5 − 1 = 0

Giải sách bài tập Toán 12 | Giải sbt Toán 12

7 tháng 6 2017

a) \(2^{x+4}+2^{x+2}=5^{x+1}+3\cdot5^x\)

\(\Rightarrow2^x+2^4+2x^x+2^2=5^x\cdot x+3\cdot5^x\)

\(\Leftrightarrow2^x+16+2^x\cdot4=5\cdot5^x+3\cdot5^x\)

\(\Leftrightarrow16\cdot2^x+4\cdot2^x=8\cdot5^x\)

\(\Leftrightarrow20\cdot2^x=8\cdot5^x\)

\(\Leftrightarrow20\cdot\left(\dfrac{2}{5}\right)^x=8\)

\(\Leftrightarrow\left(\dfrac{2}{5}\right)^x=\dfrac{2}{5}\)

\(\Leftrightarrow\left(\dfrac{2}{5}\right)^x=\left(\dfrac{2}{5}\right)^1\)

\(\Rightarrow x=1\)

23 tháng 5 2017

Hàm lũy thừa, mũ và loagrit

Hàm lũy thừa, mũ và loagrit

30 tháng 3 2016

Đặt :

\(t=\sqrt{x^2-5x+5}\left(t\ge0\right)\)

Bất phương trình trở thành :

\(\log_2\left(t+1\right)+\log_3\left(t^2+2\right)\le2\)

Xét \(f\left(t\right)=\log_2\left(t+1\right)+\log_3\left(t^2+2\right)\) trên \(\left(0;+\infty\right)\)

Do \(t\ge0\) nên \(\log_2\left(t+1\right)\) và \(\log_3\left(t^2+2\right)\) đều là các hàm số đồng biến, do đó f(t) đồng biến trên  \(\left(0;+\infty\right)\)

Lại có f(1)=2, từ đó suy ra \(t\le1\)
Giải ra được :
\(1\le x\)\(\le\frac{5-\sqrt{5}}{2}\) hoặc \(\frac{5-\sqrt{5}}{2}\le x\) \(\le4\)
29 tháng 3 2016

a) Chia 2 vế của phương trình cho \(5^x>0\), ta có :

\(\left(\frac{3}{5}\right)^x+\left(\frac{4}{5}\right)^x=1\)

Xét \(f\left(x\right)=\left(\frac{3}{5}\right)^x+\left(\frac{4}{5}\right)^x\)

Ta có :

\(f'\left(x\right)=\left(\frac{3}{5}\right)^x\ln\frac{3}{5}+\left(\frac{4}{5}\right)^x\ln\frac{4}{5}<0\) với mọi x

Do đó \(f\left(x\right)\) đồng biến trên R

Mặt khác

f(2) =1. Do đó x=2 là nghiệm duy nhất của phương trình

b) Phương trình tương đương với

\(2^x\left(2-2^x\right)=x-1\)

Với x=1 thì phương trình trên đúng, do đó x=1 là nghiệm của phương trình

- Nếu x>1 thì \(2<2^x\) và \(x-1>0\) do đó \(2^x\left(2-2^x\right)<0\)\(x-1\)

phương trình vô nghiệm

- Nếu x<1 thì \(2>2^x\) và \(x-1<0\) do đó \(2^x\left(2-2^x\right)>0\)\(x-1\)

phương trình đã cho có 1 nghiệm duy nhất là x=1

29 tháng 3 2016

d) Đưa 2 vế về cùng cơ số 2, ta được

\(2^{-3}.2^{4x-6}=\left(2^{\frac{-5}{2}}\right)^x\) hay \(2^{4x-9}=2^{\frac{5}{2}x}\)

Do đó :

\(4x-9=\frac{5}{2}x\Leftrightarrow\frac{3}{2}x=9\Leftrightarrow x=6\)

Vậy phương trình đã cho chỉ có 1 nghiệm x=6

29 tháng 3 2016

c) Phương trình đã cho tương đương với :

\(\frac{1}{4}.4^x+16.4^x=10\Leftrightarrow\frac{33}{2}.4^x=10\Leftrightarrow4^x=\frac{20}{33}\Leftrightarrow x=\log_4\frac{20}{33}\)

Vậy nghiệm của phương trình là \(x=\log_4\frac{20}{33}\)

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số