K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 4 2019

Để ý rằng tất cả các biểu thức 2 vế của 4 bài đều không âm, cho nên ta bình phương 2 vế:

a/

\(\left(x^2-x+7\right)^2=\left(-5x+1\right)^2\)

\(\Leftrightarrow\left(x^2-x+7\right)^2-\left(-5x+1\right)^2=0\)

\(\Leftrightarrow\left(x^2-6x+8\right)\left(x^2+4x+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-6x+8=0\\x^2+4x+6=0\left(vn\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)

b/

\(\left(x^2+9\right)^2=\left(-6x+1\right)^2\)

\(\Leftrightarrow\left(x^2+9\right)^2-\left(-6x+1\right)^2=0\)

\(\Leftrightarrow\left(x^2-6x+10\right)\left(x^2+6x+8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-6x+10=0\left(vn\right)\\x^2+6x+8=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-2\\x=-4\end{matrix}\right.\)

NV
6 tháng 4 2019

c/

\(\left(x^2+5x+7\right)^2-\left(3x+5\right)^2=0\)

\(\Leftrightarrow\left(x^2+2x+2\right)\left(x^2+8x+12\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+2x+2=0\left(vn\right)\\x^2+8x+12=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-2\\x=-6\end{matrix}\right.\)

d/

\(\left(x^2+6x+9\right)^2-\left(2x+3\right)^2=0\)

\(\Leftrightarrow\left(x^2+4x+6\right)\left(x^2+8x+12\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+4x+6=0\left(vn\right)\\x^2+8x+12=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-2\\x=-6\end{matrix}\right.\)

4 tháng 2 2022

lớp 8 có pt bậc 2 ak??

4 tháng 2 2022

Có nhưng giải bằng PT tích nhé

12 tháng 12 2017

15 tháng 5 2021

\(|x-6|=-5x+9\)

Xét \(x\ge6\)thì \(pt< =>x-6=-5x+9\)

\(< =>x-6+5x-9=0\)

\(< =>6x-15=0\)

\(< =>x=\frac{15}{6}\)(ktm)

Xét \(x< 6\)thì \(pt< =>x-6=5x-9\)

\(< =>4x-9+6=0\)

\(< =>4x-3=0< =>x=\frac{3}{4}\)(tm)

Vậy ...

`@` `\text {Ans}`

`\downarrow`

`1.`

\(\left(-4xy\right)\cdot\left(2xy^2-3x^2y\right)\)

`=`\(\left(-4xy\right)\left(2xy^2\right)+\left(-4xy\right)\left(-3x^2y\right)\)

`=`\(-8\left(x\cdot x\right)\left(y\cdot y^2\right)+12\left(x\cdot x^2\right)\left(y\cdot y\right)\)

`=`\(-8x^2y^3+12x^3y^2\)

`2.`

\(\left(-5x\right)\left(3x^3+7x^2-x\right)\)

`=`\(\left(-5x\right)\left(3x^3\right)+\left(-5x\right)\left(7x^2\right)+\left(-5x\right)\left(-x\right)\)

`=`\(-15x^4-35x^3+5x^2\)

`3.`

\(\left(3x-2\right)\left(4x+5\right)-6x\left(2x-1\right)\)

`=`\(3x\left(4x+5\right)-2\left(4x+5\right)-12x^2+6x\)

`=`\(12x^2+15x-8x-10-12x^2+6x\)

`=`\(\left(12x^2-12x^2\right)+\left(15x-8x+6x\right)-10\)

`=`\(13x-10\)

`4.`

\(2x^2\left(x^2-7x+9\right)\)

`=`\(2x^2\cdot x^2+2x^2\cdot\left(-7x\right)+2x^2\cdot9\)

`=`\(2x^4-14x^3+18x^2\)

`5.`

\(\left(3x-5\right)\left(x^2-5x+7\right)\)

`=`\(3x\left(x^2-5x+7\right)-5\left(x^2-5x+7\right)\)

`=`\(3x^3-15x^2+21x-5x^2+25x-35\)

`=`\(3x^3-20x^2+46x-35\)

C xem lại bài cuối ạ.

3 tháng 10 2017

a) Trường hợp 1. Xét 4 - 5x = 5 - 6x.

Tìm được x = 1.

18 tháng 1 2022

a) (3x + 2)2 - (3x - 2)2 = 5x + 38

<=> 6x.4 = 5x + 38 <=> 19x = 38 <=> x = 2

b) 3(x - 2)2 + 9(x - 1) = 3(x2 + x - 3)

<=> 3x2 - 12x + 12 + 9x - 9 = 3x2 + 3x - 9

<=> -6x = -12 <=> x = 2

c) (x + 3)2 - (x - 3)2 = 6x + 8

<=> 2x.6 = 6x + 8 <=> 6x = 8 <=> x = 4/3

d) (x - 1)3 - x(x + 1)2 = 5x(2 - x) - 11(x + 2)

<=> x3 - 3x2 + 3x - 1 - x3 - 2x2 - x = 10x - 5x2 - 11x - 22

<=> 3x = -21 <=> x = -7

e) (x + 1)(x2 - x + 1) - 2x = x(x - 1)(x + 1)

<=> x3 - 1 - 2x = x3 - x

<=> x = -1

22 tháng 5 2021

\(\left(1-x\right)\left(5x+3\right)=\left(3x-7\right)\left(x-1\right)\)

\(< =>\left(1-x\right)\left(5x+3+3x-7\right)=0\)

\(< =>\left(1-x\right)\left(8x-4\right)=0\)

\(< =>\orbr{\begin{cases}1-x=0\\8x-4=0\end{cases}< =>\orbr{\begin{cases}x=1\\x=\frac{1}{2}\end{cases}}}\)

22 tháng 5 2021

\(\left(x-2\right)\left(x+1\right)=x^2-4\)

\(< =>\left(x-2\right)\left(x+1\right)=\left(x-2\right)\left(x+2\right)\)

\(< =>\left(x-2\right)\left(x+1-x-2\right)=0\)

\(< =>-1\left(x-2\right)=0\)

\(< =>2-x=0< =>x=2\)

18 tháng 2 2022

\(a)x^2-9x+20=0 \\<=>(x-4)(x-5)=0 \\<=>x=4\ hoặc\ x=5 \\b)x^2-3x-18=0 \\<=>(x+3)(x-6)=0 \\<=>x=-3\ hoặc\ x=6 \\c)2x^2-9x+9=0 \\<=>(x-3)(2x-3)=0 \\<=>x=3\ hoặc\ x=\dfrac{3}{2}\)

 

d: \(\Leftrightarrow3x^2-6x-2x+4=0\)

=>(x-2)(3x-2)=0

=>x=2 hoặc x=2/3

e: \(\Leftrightarrow3x\left(x^2-2x-3\right)=0\)

=>x(x-3)(x+1)=0

hay \(x\in\left\{0;3;-1\right\}\)

f: \(\Leftrightarrow x^2-5x-2+x=0\)

\(\Leftrightarrow x^2-4x-2=0\)

\(\Leftrightarrow\left(x-2\right)^2=6\)

hay \(x\in\left\{\sqrt{6}+2;-\sqrt{6}+2\right\}\)