Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, ĐKXĐ \(\hept{\begin{cases}x\ne1\\x\ne2\\x\ne3\end{cases}x\ne4}\)
ta có \(đề\Leftrightarrow\frac{\left(x-1\right)^2+1}{x-1}+\frac{\left(x-4\right)^2+4}{x-4}=\frac{\left(x-2\right)^2+2}{x-2}+\frac{\left(x-3\right)^2+3}{x-3}\)
\(\Leftrightarrow x-1+\frac{1}{x-1}+x-4+\frac{4}{x-4}=x-2+\frac{2}{x-2}+x-3+\frac{3}{x-3}\)
\(\Leftrightarrow\frac{1}{x-1}+\frac{4}{x-4}=\frac{2}{x-2}+\frac{3}{x-3}\)
\(\Leftrightarrow\frac{1}{x-1}-\frac{2}{x-2}=\frac{3}{x-3}-\frac{4}{x-4}\)
\(\Leftrightarrow\frac{x-2-2x+2}{\left(x-1\right)\left(x-2\right)}=\frac{3x-12-4x+12}{\left(x-3\right)\left(x-4\right)}\)
\(\Leftrightarrow\frac{-x}{\left(x-1\right)\left(x-2\right)}=\frac{-x}{\left(x-3\right)\left(x-4\right)}\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=\left(x-3\right)\left(x-4\right)\)(đến đây bạn nhân ra tự giải nhé )
p/s :mình nghĩ bạn viết sai đề đấu + ở phép đầu tiên ko phải - bạn xem lại nhé
b,\(\Leftrightarrow[2\left(x-3\right)]^2-\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(2x-6+x-1\right)\left(2x-6-x+1\right)=0\)
\(\Leftrightarrow\left(3x-7\right)\left(x-5\right)=0\)(bạn tự giải)
c,\(\Leftrightarrow x^2\left(x+1\right)+\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow x+1=0\Leftrightarrow x=-1\left(do\left(x^2+1>0\right)\right)\)
pt <=> 1/(x+2).(x+3) + 1/(x+3).(x+4) + 1/(x+4).(x+5) + 1/(x+5).(x+6) = 1/8
<=> 1/x+2 - 1/x+3 + 1/x+3 - 1/x+4 + 1/x+4 - 1/x+5 + 1/x+5 - 1/x+6 = 1/8
<=> 1/x+2 - 1/x+6 = 1/8
<=> (x+6-x-2)/(x+2).(x+6) = 1/8
<=> 4/(x+2).(x+6) = 1/8
<=>(x+2).(x+6) = 4 : 1/8 = 32
<=>x^2 + 8x + 12 = 32
<=> x^2+8x+12-32=0
<=>x^2+8x-20=0
<=>(x-2).(x+10)=0
<=> x-2 =0 hoặc x+10 = 0
<=> x=2 hoặc x=-10
giang sinh an lanh $%###Xuyen gam cu chuoi###%$
\(\Leftrightarrow\frac{1}{\left(x-1\right)\left(x-2\right)}+\frac{1}{\left(x-2\right)\left(x-3\right)}+\frac{1}{\left(x-3\right)\left(x-4\right)}+\frac{1}{\left(x-4\right)\left(x-5\right)}=\frac{1}{8}\)
\(\Leftrightarrow\frac{1}{x-1}-\frac{1}{x-2}+\frac{1}{x-2}-\frac{1}{x-3}+...+\frac{1}{x-4}-\frac{1}{x-5}=\frac{1}{8}\)
\(\Leftrightarrow\frac{1}{x-1}-\frac{1}{x-5}=\frac{1}{8}\)
\(\Leftrightarrow\frac{x-5-x+1}{\left(x-1\right)\left(x-5\right)}=\frac{1}{8}\)
\(\Leftrightarrow-4.8=x^2-6x+5\)
\(\Leftrightarrow x^2-6x+37=0\)
phân tích mẫu thành nhân tử r` tách ra rút gọn như kiểu bài tính của lớp 5 ấy
bài tương tự : Câu hỏi của Lê Phương Oanh - Toán lớp 8 | Học trực tuyến (https://h-o-c-24.vn/hoi-dap/question/179719.html)
\(\frac{1}{2-x}+1=\frac{1}{x+2}-\frac{6-x}{3x^2-12}\)ĐKXĐ : \(x\ne\pm2\)
\(\Leftrightarrow\frac{-3\left(x+2\right)}{3\left(x-2\right)\left(x+2\right)}+\frac{3\left(x-2\right)\left(x+2\right)}{3\left(x-2\right)\left(x+2\right)}=\frac{3\left(x-2\right)}{3\left(x-2\right)\left(x+2\right)}+\frac{x-6}{3\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow\frac{-3x-6+3\left(x^2-4\right)}{3\left(x-2\right)\left(x+2\right)}-\frac{3x-6+x-6}{3\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow\frac{-3x-6+3x^2-12-3x+6-x+6}{3\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow\frac{-7x-6+3x^2}{3\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow3x^2-7x-6=0\)
\(\Leftrightarrow3x^2-9x+2x-6=0\)
\(\Leftrightarrow3x\left(x-3\right)+2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(3x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=\frac{-2}{3}\end{cases}}\)( thỏa mãn )
Vậy....
x2-4x+7 = 0 ⇔ x2 -4x + 4 + 3 = 0
⇔ (x-2)2+3=0 ⇔ (x-2)2=-3 (vô lí)
Vậy pt vô nghiệm
*Chứng minh phương trình \(x^2-4x+7=0\) vô nghiệm
Ta có: \(x^2-4x+7=0\)
\(\Leftrightarrow x^2-4x+4+3=0\)
\(\Leftrightarrow\left(x-2\right)^2+3=0\)
mà \(\left(x-2\right)^2+3\ge3>0\forall x\)
nên \(x\in\varnothing\)(đpcm)
Đặt y = 1 - 2 x - 1 x + 1 , ta có:
12 2 x - 1 x + 1 - 20 = - 12 1 - 2 x - 1 x + 1 - 8 = - 12 y - 8
Do đó phương trình đã cho có dạng y 3 + 6 y 2 = −12y − 8
Giải phương trình này:
y 3 + 6 y 2 = −12y − 8
⇔ y 3 + 3 y 2 .2 + 3y. 2 2 + 2 3 = 0
⇔ y + 3 3 = 0
⇔y =−2
Vậy phương trình đã cho tương đương với phương trình
1 - 2 x - 1 x + 1 = - 2 h a y 2 x - 1 x + 1 = 3
ĐKXĐ của phương trình là x ≠ -1. Giải phương trình này bằng cách khử mẫu, ta được:
2x − 1 = 3(x + 1)
⇔x = −4
Giá trị x = -4 thỏa mãn ĐKXĐ nên là nghiệm của phương trình đã cho.