Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ôi trờiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Điều kiện : \(x>-\frac{1}{3};y>-\frac{1}{3}\). Lấy hai phương trình của hệ trừ nhau :
\(3x^2+4x+2\ln\left(3x+1\right)-3y^2+4y+2\ln\left(3y+1\right)=2y-2x\left(1\right)\)
\(\Leftrightarrow3x^2+6+2\ln\left(3x+1\right)=3y^2+6y+2\ln\left(3y+1\right)\left(2\right)\)
Xét hàm số \(f\left(t\right)=3t^2+6t+2\ln\left(3t+1\right)\) trên khoảng \(\left(-\frac{1}{3};+\infty\right)\)
Ta có : \(f'\left(t\right)=6t+6+\frac{6}{3t+1}>0\), với mọi \(t\in\left(-\frac{1}{3};+\infty\right)\)
Vậy hàm số \(f\left(t\right)\) đồng biên trên khoảng \(\left(-\frac{1}{3};+\infty\right)\). Từ đó (2) xảy ra khi và chỉ khi x = y. Thay vào hệ phương trình đã cho, ta được :
\(3x^2+4x+2\ln\left(3x+1\right)=2x\)
\(\Leftrightarrow3x^2+2x+2\ln\left(3x+1\right)=0\) (3)
Dễ thấy x = 0 thỏa mãn (3)
Xét hàm số \(g\left(x\right)=3x^2+2x+2\ln\left(3x+1\right)\)
Ta có : \(g'\left(x\right)=6x+2+\frac{5}{3x+1}>0\) với mọi \(x>-\frac{1}{3}\)Vậy hàm số \(g\left(x\right)\) đồng biến trên \(\left(-\frac{1}{3};+\infty\right)\)suy ra x = 0 là nghiệm duy nhất của (3)Hệ phương trình ban đầu có nghiệm (x;y) = (0;0)
đặt ẩn hoặc pp thay thế thôi bn đăng muộn quá mk ngủ đây chiều rảnh giải cho