K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2021

a) Lấy (1)+(2)+(3) là tìm được z rồi thế z vào tìm x, y
b) Lấy (1) + (2) - (3) là tìm được y

17 tháng 9 2021

\(a)\hept{\begin{cases}x-2y+z=12\\2x-y+3z=18\\-3x+3y+2z=-9\end{cases}\Leftrightarrow\hept{\begin{cases}x-2y+z=12\\3y+z=-6\\6z=21\end{cases}}}\)

\(\text{Đáp số: }(x;y;z)=(\frac{16}{3};-\frac{19}{6};\frac{7}{2})\)

\(b)\hept{\begin{cases}x+y+z=7\\3x-2y+2z=5\\4x-y+3z=10\end{cases}\Leftrightarrow}\hept{\begin{cases}x+y+z=7\\-5y-z=16\\0y+0z=-2\end{cases}}\)

\(\text{ Hệ phương trình vô nghiệm.}\)

8 tháng 6 2021

\(\left(x^2-x-2\right)\sqrt{x-1}=0\left(đk:x\ge1\right)\)

\(\Leftrightarrow\left(x-2\right)\left(x+1\right)\sqrt{x-1}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\end{matrix}\right.\) (do x+1>0)

Ý B.

NV
10 tháng 4 2021

Đề bài sai rồi bạn

Thay tọa độ A vào pt BD thấy thỏa mãn. Suy ra A thuộc BD, điều này hoàn toàn vô lý :)

11 tháng 1 2022

\(\dfrac{2x+1}{3x+2}=\dfrac{x-1}{x-2}\) (đk: x≠ 2; \(-\dfrac{2}{3}\) )

⇔ \(\left(x-2\right)\left(2x+1\right)=\left(x-1\right)\left(3x+2\right)\)

⇔ \(2x^2+x-4x-2=3x^2+2x-3x-2\)

⇔ \(3x^2-x-2-2x^2+3x+2=0\)

⇔ \(x^2+2x=0\)

⇔ \(x\left(x+2\right)=0\)

⇒ \(\left[{}\begin{matrix}x=0\left(TM\right)\\x=-2\left(TM\right)\end{matrix}\right.\)

Vậy \(S=\left\{0;-2\right\}\)

\(\Leftrightarrow3x^2-3x+2x-2=2x^2-4x+x-2\)

\(\Leftrightarrow x^2+2x=0\)

=>x(x+2)=0

=>x=0 hoặc x=-2

11 tháng 11 2021

1: \(\Leftrightarrow x^2-6x=x^2-7x+10\)

hay x=10

2 tháng 1 2021

\(D=m^2-1;D_x=m^2-1;D_y=0\)

Nếu \(D=m^2-1\ne0\Leftrightarrow m\ne\pm1\)

Hệ phương trình đã cho có nghiệm \(\left(x;y\right)=\left(1;0\right)\)

Nếu \(D=m^2-1=0\Leftrightarrow\left[{}\begin{matrix}m=1\\m=-1\end{matrix}\right.\)

Hệ phương trình đã cho có vô số nghiệm

5 tháng 8 2019

Hệ phương trình trở thành:

\(\hept{\begin{cases}\left(x+y\right)\left(x^2+y^2\right)=5\left(1\right)\\\left(x+y\right)\left(x-y\right)^2=3\left(2\right)\end{cases}}\)

Ta có: x+y  khác 0; x-y khác 0

+) Với x =0  thay vào ta có hệ phương trình mới: \(\hept{\begin{cases}y.y^2=5\\y.y^2=3\end{cases}}\) loại

+) Với x khác 0, Đặt y=xt

Chia vế theo vế (1) cho (2), Ta có:

 \(\frac{x^2+y^2}{\left(x-y\right)^2}=\frac{5}{3}\Leftrightarrow\frac{x^2+x^2t^2}{\left(x-xt\right)^2}=\frac{5}{3}\)

\(\Leftrightarrow\frac{1+t^2}{\left(1-t\right)^2}=\frac{5}{3}\)

\(\Leftrightarrow3\left(1+t^2\right)=5\left(1-t\right)^2\)

\(\Leftrightarrow2t^2-10t+2=0\Leftrightarrow\orbr{\begin{cases}t=\frac{5+\sqrt{21}}{2}\\t=\frac{5-\sqrt{21}}{2}\end{cases}}\)

Ta có: y=xt thế vào phương trình (1) hoặc (2) ta có phương trình ẩn x. Gợi ý như vậy em làm tiếp nhé! :)

24 tháng 7 2023

\(R=d\left(I;\Delta\right)=\dfrac{\left|3.3-4.\left(-1\right)+2\right|}{\sqrt{3^3+\left(-4\right)}^2}=3\)

Phương trình đường tròn có tâm \(I\left(3;-1\right)\) và \(R=3\)

\(\Rightarrow\left(x-3\right)^2+\left(y+1\right)^2=9\)