Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(2x^3-5x^2+8x-3=0\)
\(\Leftrightarrow2x^3-x^2-4x^2+2x+6x-3=0\)
=>2x-1=0
hay x=1/2
a) -2x+14=0
<=>-2x= - 14
<=>x = 7
Vậy phương trình có tập nghiệm x={7}
b)(4x-10) (x+5)=0
<=>4x-10=0 <=>4x=10 <=>x=5/2
<=>x+5=0 <=>x=-5
Vậy phương trình có tập nghiệm x={5/2;- 5}
c)\(\frac{1-x}{x+1}\) + 3=\(\frac{2x+3}{x+1}\)
ĐKXD: x+1 #0<=>x#-1(# là khác)
\(\frac{1-x}{x+1}\)+3=\(\frac{2x+3}{x+1}\)
<=>\(\frac{1-x}{x+1}\)+\(\frac{3.\left(x+1\right)}{x+1}\)=\(\frac{2x+3}{x+1}\)
<=>\(\frac{1-x}{x+1}\)+\(\frac{3x+3}{x+1}\)=\(\frac{2x+3}{x+1}\)
=>1-x+3x+3=2x+3
<=>-x+3x-2x=-1-3+3
<=>0x = -1 (vô nghiệm)
Vâyj phương trình vô nghiệm
d) 1,2-(x-0,8)=-2(0,9+x)
<=> 1,2-x+0,8=-1,8-2x
<=>-x+2x=-1,2-0,8-1,8
<=>x=-4
Vậy phương trình có tập nghiệm x={-4}
ta có : \(S=m,P=m+7\)
do đó: \(x^1_2+x^2_2=10\) \(\Leftrightarrow S^2-2P=10\)
\(\Leftrightarrow m^2-2m-14=10\)
\(\Leftrightarrow m^2-2m-24=0\)
\(\Leftrightarrow\begin{cases}m=-4\left(\Rightarrow\Delta=m^2-4m-28>0\right)\\m=6\left(\Rightarrow\Delta=m^2-4m-28<0\right)\end{cases}\)
\(\Rightarrow m=-4\) là giá trị cần tìm
ta có : S=m,P=m+7S=m,P=m+7
do đó: x12+x22=10x21+x22=10 ⇔S2−2P=10⇔S2−2P=10
⇔m2−2m−14=10⇔m2−2m−14=10
⇔m2−2m−24=0⇔m2−2m−24=0
⇔{m=−4(⇒Δ=m2−4m−28>0)m=6(⇒Δ=m2−4m−28<0)⇔{m=−4(⇒Δ=m2−4m−28>0)m=6(⇒Δ=m2−4m−28<0)
⇒m=−4⇒m=−4 là giá trị cần tìm
Lời giải
Vì $0\leq a\leq b\leq c\leq 1$ nên $ab,bc,ca\geq abc$
Do đó
$A=\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\leq \frac{a+b+c}{abc+1}$
Ta cần CM $\frac{a+b+c}{abc+1}\leq 2\Leftrightarrow 2(abc+1)\geq a+b+c$
Thật vậy:
Vì $a,b,c \leq 1$ nên $\left\{\begin{matrix}(a-1)(bc-1)\geq 0\\ (b-1)(c-1)\geq 0\end{matrix}\right.\Rightarrow \left\{\begin{matrix}2abc+1\geq abc+1\geq bc+a\\ bc+1\geq b+c\end{matrix}\right.$
Do đó $2abc+2\geq a+bc+1\geq a+b+c$
Hoàn tất chứng minh
Dấu bằng xảy ra khi $(a,b,c)=(0,1,1)$
S là tập con của F trong các trường hợp sau:
TH1: S là tập rỗng, tức là pt x2 - 2x + m = 0 vô nghiệm => delta' = 1 - m < 0 => m > 1
TH2: S có 1 nghiệm kép < 0 => delta' = 1 - m = 0 và nghiệm kép -b'/a = 1 < 0. Điều này không xảy ra
TH3: S có 2 nghiệm đều < 0 => Tổng 2 nghiệm cũng < 0. Mà tổng 2 nghiệm = -b/a = 1 là số dương => Điều này cũng ko bao giờ xảy ra.
Vậy m > 1 thì S là rỗng và khi đó S là tập con của F.
nhiều bài quá mình chỉ làm được bài 1,3,4,5
bài 2 mình đang suy nghĩ
bạn có thể vào để hỏi bài !
a) \(4x-7>0\Leftrightarrow4x>7\)\(\Leftrightarrow x>\frac{7}{4}\)
b) \(-5x+8>0\Leftrightarrow5x<8\Leftrightarrow x<\frac{8}{5}\)
c)\(9x-10\le0\Leftrightarrow9x\le10\)\(\Leftrightarrow x\le\frac{10}{9}\)
d) \(\left(x+1\right)^2+4\le x^2+3x+10\)\(\Leftrightarrow x^2-2x+1+4\le x^2+3x+10\)
\(\Leftrightarrow5x\ge-5\Leftrightarrow x\ge-1\)
a,
4x - 7 > 0
↔ 4x > 7
↔ x > \(\dfrac{7}{4}\)
Vậy tập nghiệm của bất phương trình là S = { x / x>\(\dfrac{7}{4}\) }
b,
-5x + 8 > 0
↔ 8 > 5x
↔ \(\dfrac{8}{5}\) > x
Vậy tập nghiệm của bất phương trình là S = { x / \(\dfrac{8}{5}\) > x }
c,
9x - 10 ≤ 0
↔ 9x ≤ 10
↔ x ≤ \(\dfrac{10}{9}\)
Vậy tập nghiệm của bất phương trình là S = { x / x ≤ \(\dfrac{10}{9}\) }
d,
( x - 1 )\(^2\) + 4 ≤ x\(^2\) + 3x + 10
↔ x\(^2\) - 2x +1 +4 ≤ x\(^2\) + 3x + 10
↔ 1 + 4 - 10 ≤ x \(^2\) - x\(^2\) + 3x + 2x
↔ -5 ≤ 5x
↔ -1 ≤ x
Vậy tập nghiệm của bất phương trình là S = { x / -1 ≤ x}