K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2023

a. Vì \(0< 0,1< 1\) nên bất phương trình đã cho 

\(\Leftrightarrow0< x^2+x-2< x+3\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+x-2>0\\x^2-5< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x< -2\\x>1\end{matrix}\right.\\-\sqrt{5}< x< \sqrt{5}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-\sqrt{5}< x< -2\\1< x< \sqrt{5}\end{matrix}\right.\)

Vậy tập nghiệm của bất phương trình là \(S=\left\{-\sqrt{5};-2\right\}\) và \(\left\{1;\sqrt{5}\right\}\)

b. Điều kiện \(\left\{{}\begin{matrix}2-x>0\\x^2-6x+5>0\end{matrix}\right.\)

Ta có:

 \(log_{\dfrac{1}{3}}\left(x^2-6x+5\right)+2log^3\left(2-x\right)\ge0\)

\(\Leftrightarrow log_{\dfrac{1}{3}}\left(x^2-6x+5\right)\ge log_{\dfrac{1}{3}}\left(2-x\right)^2\)

\(\Leftrightarrow x^2-6x+5\le\left(2-x\right)^2\)

\(\Leftrightarrow2x-1\ge0\)

Bất phương trình tương đương với:

\(\left\{{}\begin{matrix}x^2-6x+5>0\\2-x>0\\2x-1\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x< 1\\x>5\end{matrix}\right.\\x< 2\\x\ge\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{1}{2}\le x< 1\)

Vậy tập nghiệm của bất phương trình là: \(\left(\dfrac{1}{2};1\right)\)

23 tháng 5 2017

Hàm lũy thừa, mũ và loagrit

Hàm lũy thừa, mũ và loagrit

NV
26 tháng 1 2019

1/ ĐKXĐ: \(x>0\)

\(log_{5x}5-log_{5x}x+log_5^2x=1\)

\(\Leftrightarrow\dfrac{1}{log_55x}-\dfrac{1}{log_x5x}+log_5^2x=1\)

\(\Leftrightarrow\dfrac{1}{1+log_5x}-\dfrac{1}{1+log_x5}+log_5^2x-1=0\)

\(\Leftrightarrow\dfrac{1}{1+log_5x}-\dfrac{log_5x}{1+log_5x}+\left(log_5x-1\right)\left(log_5x+1\right)=0\)

\(\Leftrightarrow\dfrac{1-log_5x}{1+log_5x}-\left(1-log_5x\right)\left(1+log_5x\right)=0\)

\(\Leftrightarrow\left(1-log_5x\right)\left(\dfrac{1}{1+log_5x}-\left(1+log_5x\right)\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}1-log_5x=0\\\dfrac{1}{1+log_5x}=1+log_5x\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}1-log_5x=0\\1+log_5x=1\\1+log_5x=-1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=1\\x=\dfrac{1}{25}\end{matrix}\right.\)

2/ ĐKXĐ: \(x>0\)

\(log_5\left(5^x-1\right).log_{25}\left(5^{x+1}-5\right)=1\)

\(\Leftrightarrow log_5\left(5^x-1\right).log_{5^2}5\left(5^x-1\right)=1\)

\(\Leftrightarrow log_5\left(5^x-1\right)\left(1+log_5\left(5^x-1\right)\right)=2\)

\(\Leftrightarrow log_5^2\left(5^x-1\right)+log_5\left(5^x-1\right)-2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}log_5\left(5^x-1\right)=1\\log_5\left(5^x-1\right)=-2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}5^x-1=5\\5^x-1=\dfrac{1}{25}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}5^x=6\\5^x=\dfrac{26}{25}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=log_56\\x=log_5\dfrac{26}{25}\end{matrix}\right.\)

3/ ĐKXĐ: \(x>0\)

\(2log_3^2x-log_3x.log_3\left(\sqrt{2x+1}-1\right)=0\)

\(\Leftrightarrow log_3x\left(2log_3x-log_3\left(\sqrt{2x+1}-1\right)\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}log_3x=0\Rightarrow x=1\\2log_3x-log_3\left(\sqrt{2x+1}-1\right)=0\left(1\right)\end{matrix}\right.\)

Xét (1): \(log_3x^2=log_3\left(\sqrt{2x+1}-1\right)\Leftrightarrow x^2=\sqrt{2x+1}-1\)

\(\Leftrightarrow x^2+1=\sqrt{2x+1}\Leftrightarrow x^4+2x^2+1=2x+1\)

\(\Leftrightarrow x^4+2x^2-2x=0\Leftrightarrow x\left(x^3+2x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(l\right)\\x^3+2x-2=0\end{matrix}\right.\) ????

Pt bậc 3 kia có nghiệm rất xấu, chỉ giải được bằng công thức Cardano mà bậc phổ thông không học, nên bạn có chép đề sai không vậy?

2 tháng 4 2017

a) Đặt t = 13x > 0 ta được phương trình:

13t2 – t – 12 = 0 ⇔ (t – 1)(13t + 12) = 0

⇔ t = 1 ⇔ 13x = 1 ⇔ x = 0

b)

Chia cả hai vế phương trình cho 9x ta được phương trình tương đương

(1+(23)x)(1+3.(23)x)=8.(23)x(1+(23)x)(1+3.(23)x)=8.(23)x

Đặt t=(23)xt=(23)x (t > 0) , ta được phương trình:

(1 + t)(1 + 3t) = 8t ⇔ 3t2 – 4t + 1 = 0 ⇔ t∈{13,1}t∈{13,1}

Với t=13t=13 ta được nghiệm x=log2313x=log2313

Với t = 1 ta được nghiệm x = 0

c) Điều kiện: x > 2

Vì nên phương trình đã cho tương đương với:

[log3(x−2)=0log5x=1⇔[x=3x=5[log3(x−2)=0log5x=1⇔[x=3x=5

d) Điều kiện: x > 0

log22x – 5log2x + 6 = 0

⇔(log2x – 2)(log2x – 3) = 0

⇔ x ∈ {4, 8}



18 tháng 4 2016

Điều kiện \(\begin{cases}x\ne1\\x>\frac{1}{2}\end{cases}\)

\(\log_3\left(x-1\right)^2+\log_{\sqrt{3}}\left(2x-1\right)=2\Leftrightarrow2\log_3\left|x-1\right|+2\log_3\left(2x-1\right)=2\)

                                                      \(\Leftrightarrow\log_3\left|x-1\right|\left(2x-1\right)=\log_33\)

                                                       \(\Leftrightarrow\left|x-1\right|\left(2x-1\right)=3\)

                                                       \(\frac{1}{2}\)<x<1 và \(2x^2-3x+4=0\)

                                                hoặc x>1 và \(2x^2-3x-2=0\)

\(\Leftrightarrow x=2\) thỏa mãn điều kiện. Vậy x=2

24 tháng 3 2016

Điều kiện x>1

Từ (1) ta có  \(\log_{\sqrt{3}}\frac{x+1}{x-1}>\log_34\) \(\Leftrightarrow\frac{x+1}{x-1}>2\) \(\Leftrightarrow\) 1<x<3

Đặt \(t=\log_2\left(x^2-2x+5\right)\)

Tìm điều kiện của t :

- Xét hàm số \(f\left(x\right)=\log_2\left(x^2-2x+5\right)\) với mọi x thuộc (1;3)

- Đạo hàm : \(f\left(x\right)=\frac{2x-2}{\ln2\left(x^2-2x+5\right)}>\) mọi \(x\in\left(1,3\right)\)

Hàm số đồng biến nên ta có \(f\left(1\right)\) <\(f\left(x\right)\) <\(f\left(3\right)\) \(\Leftrightarrow\)2<2<3

- Ta có \(x^2-2x+5=2'\)

 \(\Leftrightarrow\) \(\left(x-1\right)^2=2'-4\)

Suy ra ứng với mõi giá trị \(t\in\left(2,3\right)\) ta luôn có 1 giá trị \(x\in\left(1,3\right)\)

Lúc đó (2) suy ra : \(t-\frac{m}{t}=5\Leftrightarrow t^2-5t=m\)

Xét hàm số : \(f\left(t\right)=t^2-5t\) với mọi \(t\in\left(2,3\right)\)

- Đạo hàm : \(f'\left(t\right)=2t-5=0\Leftrightarrow t=\frac{5}{2}\)

- Bảng biến thiên :

x2                                              \(\frac{5}{2}\)                                                    3
y'                  +                             0                       -
y

-6                                                                                                      -6

                                                -\(\frac{25}{4}\)

 

24 tháng 3 2016

Để hệ có 2 cặp nghiệm phân biệt \(\Leftrightarrow-6>-m>-\frac{25}{4}\)\(\Leftrightarrow\)\(\frac{25}{4}\) <m<6

NV
14 tháng 1 2022

ĐKXĐ: \(x>\dfrac{1}{2}\)

\(log_{\dfrac{1}{2}}\left(\dfrac{x+1}{2x-1}\right)< 2\)

\(\Rightarrow\dfrac{x+1}{2x-1}>\dfrac{1}{4}\)

\(\Rightarrow x>-\dfrac{5}{2}\)

Kết hợp ĐKXĐ: \(\Rightarrow x>\dfrac{1}{2}\)

NV
16 tháng 11 2018

Câu a đúng là cú lừa, biến đổi logarit thì dễ, đến lúc nó ra pt vô tỉ theo x mới thấy vấn đề :D

a/ĐK: \(0< x< 1\)

\(2log_2x-log_2\left(1-\sqrt{x}\right)=log_2\left(x-2\sqrt{x}+2\right)\)

\(\Leftrightarrow log_2x^2-log_2\left(1-\sqrt{x}\right)=log_2\left(x-2\sqrt{x}+2\right)\)

\(\Leftrightarrow log_2\left(\dfrac{x^2}{1-\sqrt{x}}\right)=log_2\left(x-2\sqrt{x}+2\right)\)

\(\Leftrightarrow\dfrac{x^2}{1-\sqrt{x}}=x-2\sqrt{x}+2=x+2\left(1-\sqrt{x}\right)\)

Đặt \(1-\sqrt{x}=t\) (\(0< t< 1\)) \(\Rightarrow\dfrac{x^2}{t}=x+2t\)

\(\Leftrightarrow x^2-t.x-2t^2=0\) \(\Rightarrow\Delta=t^2+8t^2=9t^2\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{t+3t}{2}=2t\\x=\dfrac{t-3t}{2}=-t< 0\left(l\right)\end{matrix}\right.\)

\(\Rightarrow x=2\left(1-\sqrt{x}\right)\Rightarrow x+2\sqrt{x}-2=0\) \(\Rightarrow x=4-2\sqrt{3}\)

b/ĐK \(x>0\)

\(log_3\left(x-1\right)^2-log_3x+\left(x-1\right)^2=x\)

\(\Leftrightarrow log_3\left(x-1\right)^2+\left(x-1\right)^2=log_3x+x\)

Xét hàm \(f\left(t\right)=log_3t+t\) \(\left(t>0\right)\Rightarrow f'\left(t\right)=\dfrac{1}{t.ln3}+1>0\Rightarrow f\left(t\right)\) đồng biến

\(\Rightarrow f\left(t_1\right)=f\left(t_2\right)\Leftrightarrow t_1=t_2\)

\(\Rightarrow log_3\left(x-1\right)^2+\left(x-1\right)^2=log_3x+x\Leftrightarrow\left(x-1\right)^2=x\)

\(\Leftrightarrow x^2-3x+1=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{3+\sqrt{5}}{2}\\x=\dfrac{3-\sqrt{5}}{2}\end{matrix}\right.\)

17 tháng 11 2018

Cảm ơn nhiều ạ.