Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x - 5 > 3
⇔ x > 3 + 5 (chuyển -5 từ vế trái sang vế phải và đổi dấu thành 5)
⇔ x > 8
Vậy nghiệm của bất phương trình là x > 8.
b) x - 2x < -2x + 4 ⇔ x - 2x + 2x < 4 ⇔ x < 4
Vậy nghiệm của bất phương trình là x < 4.
c) -3x > -4x + 2 ⇔ -3x + 4x > 2 ⇔ x > 2
Vậy nghiệm của bất phương trình là x > 2.
d) 8x + 2 < 7x - 1 ⇔ 8x - 7x < -1 - 2 ⇔ x < -3
Vậy nghiệm của bất phương trình là x < -3.
\(\frac{3x^2-7x+5}{x^2-x-x}-x+\frac{1}{x+1}< 0\Leftrightarrow\frac{x^2-6x+11}{\left(x-2\right)\left(x+1\right)}< 0\Leftrightarrow\frac{\left(x-3\right)^2+2}{\left(x-2\right)\left(x+1\right)}< 0\)
=> (x-2)(x+1)<0 ( vì (x-3)^2+2>0 lđ)
lại có x+1>x-2 => x-2<0 và x+1>0
=> -1<x<2
học tốt
Cho mình làm lại nha:
\(\frac{3x^2-7x+5}{\left(x+1\right)\left(x-2\right)}< \frac{2x+2-1}{x+1}.\)
\(\Leftrightarrow\frac{3x^2-7x+5}{\left(x+1\right)\left(x-2\right)}-\frac{2x+1}{x+1}< 0.\)
\(\Leftrightarrow\frac{3x^2-7x+5-\left(2x+1\right)\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}< 0.\)
\(\Leftrightarrow\frac{3x^2-7x+5-2x^2+4x-x+2}{\left(x+1\right)\left(x-2\right)}< 0.\)
\(\Leftrightarrow\frac{x^2-4x+4+3}{\left(x+1\right)\left(x-2\right)}< 0.\)
\(\Leftrightarrow\frac{\left(x-2\right)^2+3}{\left(x+1\right)\left(x-2\right)}< 0\Leftrightarrow\left(x+1\right)\left(x-2\right)< 0.\)
ta có x+1>x-2 => x+1>0;x-2<0 => -1<x<2
đọc lộn xíu xin lỗi nha
học tốt
x2 - 7x + 14 ≥ 2
<=> x2 - 7x + 14 - 2 ≥ 0
<=> x2 - 7x + 12 ≥ 0
<=> x2 - 4x - 3x + 12 ≥ 0
<=> x(x - 4) - 3(x - 4) ≥ 0
<=> (x - 4)(x - 3) ≥ 0
<=> x = 4 hoặc x = 3
Vậy tập nghiệm bất phương trình S = {4; 3}
a) \(\left(x+\frac{1}{9}\right)\left(2x-5\right)< 0\)
TH1 : \(\hept{\begin{cases}x+\frac{1}{9}>0\\2x-5< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>\frac{-1}{9}\\x< \frac{5}{2}\end{cases}}\)
\(\Leftrightarrow\frac{-1}{9}< x< \frac{5}{2}\)( thỏa )
TH2 : \(\hept{\begin{cases}x+\frac{1}{9}< 0\\2x-5>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x< -\frac{1}{9}\\x>\frac{5}{2}\end{cases}}\)
\(\Leftrightarrow\frac{5}{2}< x< -\frac{1}{9}\)( loại )
Vậy....
b) \(x^2-6x+9< 0\)
\(\Leftrightarrow\left(x-3\right)^2< 0\)( vô lý )
Vậy bpt vô nghiệm
\(\frac{x-5}{3}< \frac{x-8}{4}\Rightarrow4.\left(x-5\right)< 3.\left(x-8\right)\Rightarrow4x-20< 3x-24\Rightarrow x< -4\)
a) \(\frac{x-5}{3}< \frac{x-8}{4}\)
<=> \(\frac{4\left(x-5\right)}{12}< \frac{3\left(x-8\right)}{12}\)
<=> \(4\left(x-5\right)< 3\left(x-8\right)\)
<=> \(4x-20< 3x-24\)
<=> \(4x-3x< 20-24\)
<=> \(x< -4\)
Vậy bất phương trình có tập nghiệm là { x l x < -4 }
b) \(\frac{x+3}{4}+1< x+\frac{x+2}{3} \)
<=> \(\frac{3\left(x+3\right)}{12}+\frac{12}{12}< \frac{12x}{12}+\frac{4\left(x+2\right)}{12}\)
<=> \(3\left(x+3\right)+12< 12x+4\left(x+2\right)\)
<=> \(3x+9+12< 12x+4x+8\)
<=> \(3x-12x-4x< 8-9-12\)
<=> \(-13x< -13\)
<=> \(x>1\)
Vậy bất phương trình có tập nghiệm là { x l x > 1 }
Ta có: 7x – 2,2 < 0,6
⇔ 7x < 0,6 + 2,2
⇔ 7x < 2,8
⇔ x < 0,4
Vậy tập nghiệm của bất phương trình là: {x|x < 0,4}