Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam thức \(f\left( x \right) = 7{x^2} - 19x - 6\) có \(\Delta = 529 > 0\), có hai nghiệm phân biệt \({x_1} = - \frac{2}{7},{x_2} = 3\) và có \(a = 7 > 0\)
Ta có bảng xét dấu như sau
Vậy nghiệm của bất phương trình là đoạn \(\left[ { - \frac{2}{7};3} \right]\)
b) \( - 6{x^2} + 11x > 10 \Leftrightarrow - 6{x^2} + 11x - 10 > 0\)
Xét tam thức \(f\left( x \right) = - 6{x^2} + 11x - 10\) có \(\Delta = - 119 < 0\)và có \(a = - 6 < 0\)
Ta có bảng xét dấu như sau
Vậy bất phương trình vô nghiệm
c) \(3{x^2} - 4x + 7 > {x^2} + 2x + 1 \Leftrightarrow 2{x^2} - 6x + 6 > 0\)
Xét tam thức \(f\left( x \right) = 2{x^2} - 6x + 6\) có \(\Delta = - 12 < 0\)và có \(a = 2 > 0\)
Ta có bảng xét dấu như sau
Vậy bất phương trình có vô số nghiệm
d) Xét tam thức \(f\left( x \right) = {x^2} - 10x + 25\) có \(\Delta = 0\), có nghiệm kép \({x_1} = {x_2} = 5\) và có \(a = 1 > 0\)
Ta có bảng xét dấu như sau
Vậy nghiệm của bất phương trình là \(x = 5\)
1) \(\sqrt[]{3x+7}-5< 0\)
\(\Leftrightarrow\sqrt[]{3x+7}< 5\)
\(\Leftrightarrow3x+7\ge0\cap3x+7< 25\)
\(\Leftrightarrow x\ge-\dfrac{7}{3}\cap x< 6\)
\(\Leftrightarrow-\dfrac{7}{3}\le x< 6\)
\(f\left(x\right)=\dfrac{\left(3x-4\right)\left(2x-3\right)}{\left(x^2-5x+6\right)\left(5-x\right)}>0\)
\(\Leftrightarrow\dfrac{\left(3x-4\right)\left(2x-3\right)}{\left(x-2\right)\left(x-3\right)\left(5-x\right)}>0\)
Bảng xét dấu:
Từ bảng xét dấu ta thấy nghiệm của BPT là: \(\left[{}\begin{matrix}x< 5\\\dfrac{3}{2}< x< 2\\3< x< 5\end{matrix}\right.\)
1. \(\Leftrightarrow\left(2x-1\right)\left(3x+1\right)< 0\)
\(\Rightarrow-\frac{1}{3}< x< \frac{1}{2}\)
2. \(\Leftrightarrow\left(x-2\right)\left(3-2x\right)>0\)
\(\Rightarrow\frac{3}{2}< x< 2\)
3. \(\Leftrightarrow\left(5x-3\right)^2>0\)
\(\Rightarrow x\ne\frac{3}{5}\)
4. \(\Leftrightarrow-3\left(x-\frac{1}{6}\right)-\frac{59}{12}< 0\)
\(\Rightarrow x\in R\)
5. \(\Leftrightarrow2\left(x-1\right)^2+5\ge0\)
\(\Rightarrow x\in R\)
6. \(\Leftrightarrow\left(x+2\right)\left(8x+7\right)\le0\)
\(\Rightarrow-2\le x\le-\frac{7}{8}\)
7.
\(\Leftrightarrow\left(x-1\right)^2+2>0\)
\(\Rightarrow x\in R\)
8. \(\Leftrightarrow\left(3x-2\right)\left(2x+1\right)\ge0\)
\(\Rightarrow\left[{}\begin{matrix}x\le-\frac{1}{2}\\x\ge\frac{2}{3}\end{matrix}\right.\)
9. \(\Leftrightarrow\frac{1}{3}\left(x+3\right)\left(x+6\right)< 0\)
\(\Rightarrow-6< x< -3\)
10. \(\Leftrightarrow x^2-6x+9>0\)
\(\Leftrightarrow\left(x-3\right)^2>0\)
\(\Rightarrow x\ne3\)
a: \(A=\left\{0;1;2;3;4;5\right\}\)
b: \(B=\left\{2;3;4;5\right\}\)
c: \(C=\left\{0;1;-1;2;-2;3;-3\right\}\)
\(1.x^2+x-6>0\)
\(\Leftrightarrow x^2-x+6x-6>0\)
\(\Leftrightarrow x\left(x-1\right)+6\left(x-1\right)>0\)
\(\Leftrightarrow\left(x-1\right)\left(x+6\right)>0\)
TH1:\(\hept{\begin{cases}x-1>0\\x+6>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>1\\x>-6\end{cases}}\Leftrightarrow x>1}\)
TH2:\(\hept{\begin{cases}x-1< 0\\x+6< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 1\\x< -6\end{cases}\Leftrightarrow}x< -6}\)
\(2.x^2+7x+12\le0\)
\(\Leftrightarrow x^2+3x+4x+12\le0\)
\(\Leftrightarrow\left(x+3\right)\left(x+4\right)\le0\)
TH1:\(\hept{\begin{cases}x+3\ge0\\x+4\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-3\\x\le-4\end{cases}\left(l\right)}}\)
TH2:\(\hept{\begin{cases}x+3\le0\\x+4\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le-3\\x\ge-4\end{cases}\Leftrightarrow}-4\le x\le-3\left(n\right)}\)
\(3.\) \(\left(x-2\right)\left(x+6\right)\left(2x+5\right)\le0\)
TH1:\(\hept{\begin{cases}x-2\ge0\\x+6\ge0\\2x+5\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge2\\x\ge-6\\x\le-\frac{5}{2}\end{cases}}}\left(l\right)\)
TH2:(loại)
TH3:\(\hept{\begin{cases}x-2\le0\\x+6\ge0\\2x+5\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le2\\x\ge-6\\x\ge-\frac{5}{2}\end{cases}\Leftrightarrow}-\frac{5}{2}\le x\le2}\)
Và còn nhiều TH khác nữa tự tìm nhé
\(4.\) \(\left(1-x\right)\left(x^2-6\right)>0\)
TH1:\(\hept{\begin{cases}1-x>0\\x^2-6>0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 1\\x>\sqrt{6}\end{cases}\left(l\right)}}\)
TH2:\(\hept{\begin{cases}1-x< 0\\x^2-6< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>1\\x< \sqrt{6}\end{cases}\Leftrightarrow}1< x< \sqrt{6}\left(n\right)}\)