Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(x^2-2x-1< 0\)
\(\Leftrightarrow\left(x-1\right)^2< 2\)
\(\Leftrightarrow-\sqrt{2}< x-1< \sqrt{2}\)
\(\Leftrightarrow1-\sqrt{2}< x< 1+\sqrt{2}\)
b/ \(2x^2-6x+5=\left(2x^2-\frac{2.\sqrt{2}.x.3}{\sqrt{2}}+\frac{9}{2}\right)+\frac{1}{2}=\left(\sqrt{2}x-\frac{3}{\sqrt{2}}\right)^2+\frac{1}{2}>0\)
Câu 2 tự làm nhé.
\(x^2-2x-1< 0\)
\(\left(x-2\right)x-1< 0\)
\(\left(x-2\right)x\le1\)
\(\Leftrightarrow1-\sqrt{2}< x< 1+\sqrt{2}\)
Nếu \(x< -1\) thì pt đề bài trở thành:
\(4-x>-x-1\)
\(\Leftrightarrow4>-1\) (luôn đúng)
Nếu \(-1\le x< 4\) thì pt trở thành:
\(4-x>x+1\)
\(\Rightarrow-x-x>1-4\Rightarrow-2x>-3\Rightarrow x< \frac{3}{2}\)
Kết hợp với điều kiện trên, ta được: \(-1\le x< \frac{3}{2}\)
Nếu \(x\ge4\) thì phương trình đề bài đã cho trở thành:
\(x-4>x+1\Rightarrow-4>1\) (vô lý)
Vậy tập nghiệm là: \(S=\left\{-1\le x< \frac{3}{2}\right\}\)
ĐKXĐ : \(x\ne-1\)
\(\left|\frac{3-2x}{1+x}\right|>4\)\(\Leftrightarrow\)\(\orbr{\begin{cases}\frac{3-2x}{1+x}>4\left(1\right)\\\frac{2x-3}{1+x}< -4\left(2\right)\end{cases}}\)
\(\left(1\right)\)\(\Leftrightarrow\)\(3-2x>4+4x\)\(\Leftrightarrow\)\(x< \frac{-1}{6}\)
\(\left(2\right)\)\(\Leftrightarrow\)\(2x-3< -4-4x\)\(\Leftrightarrow\)\(x< \frac{-1}{6}\)
Vậy \(x< \frac{-1}{6}\)
PS : ko wen làm pt nên sai sót thì bỏ qua nhé :)
bài 2
ta có \(\left(\sqrt{8a^2+1}+\sqrt{8b^2+1}+\sqrt{8c^2+1}\right)^2\)
\(=\left(\sqrt{a}.\sqrt{\frac{8a^2+1}{a}}+\sqrt{b}.\sqrt{\frac{8b^2+1}{b}}+\sqrt{c}.\sqrt{\frac{8c^2+1}{c}}\right)^2\)\(=\left(A\right)\)
Áp dụng bất đẳng thức Bunhiacopxki ta có;
\(\left(A\right)\le\left(a+b+c\right)\left(8a+\frac{1}{a}+8b+\frac{1}{b}+8c+\frac{8}{c}\right)\)
\(=\left(a+b+c\right)\left(9a+9b+9c\right)=9\left(a+b+c\right)^2\)
\(\Rightarrow3\left(a+b+c\right)\ge\sqrt{8a^2+1}+\sqrt{8b^2+1}+\sqrt{8c^2+1}\)(đpcm)
Dấu \(=\)xảy ra khi \(a=b=c=1\)
\(x\ge m\)
\(\sqrt{x-m+2\sqrt{m\left(x-m\right)}+m}+\sqrt{x-m-2\sqrt{m\left(x-m\right)}+m}\le2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-m}+\sqrt{m}\right)^2}+\sqrt{\left(\sqrt{x-m}-\sqrt{m}\right)^2}\le2\)
\(\Leftrightarrow\sqrt{x-m}+\sqrt{m}+\left|\sqrt{x-m}-\sqrt{m}\right|\le2\)
- Nếu \(\sqrt{x-m}\ge\sqrt{m}\Leftrightarrow x\ge2m\) BPT trở thành:
\(2\sqrt{x-m}\le2\Leftrightarrow x\le m+1\Rightarrow2m\le x\le m+1\)
\(\Rightarrow m+1\ge2m\Rightarrow m\le1\)
- Nếu \(\sqrt{x-m}< \sqrt{m}\Leftrightarrow m\le x< 2m\) BPT trở thành:
\(2\sqrt{m}\le2\Rightarrow m\le1\)
Vậy nếu \(0< m\le1\) thì BPT có nghiệm \(m\le x\le m+1\)
\(x^2-1>0\Rightarrow x^2>1\Rightarrow\left|x\right|>1\Rightarrow\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\)
\(\Rightarrow x^2>1\Rightarrow x>1\) hoặc \(x< -1\)