Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>\(\dfrac{x^2+2x-13-x+1}{x-1}< 0\)
=>\(\dfrac{x^2+x-12}{x-1}< 0\)
=>\(\dfrac{\left(x+4\right)\left(x-3\right)}{x-1}< 0\)
=>1<x<3 hoặc x<-4
b: =>\(\dfrac{3x^2+4x-3x-4}{x-1}< 3\)
=>3x+4<3
=>3x<-1
=>x<-1/3
c: TH1: 2x^2-3x+1>0 và x+2>0
=>(2x-1)(x-1)>0 và x+2>0
=>x>1
TH2: (2x-1)(x-1)<0 và x+2<0
=>x<-2 và 1/2<x<1
=>Loại
giải bpt
a) \(x^2-3x-\sqrt{x^2-3x+5}>1\)
b) \(\sqrt[4]{x-\sqrt{x^2-1}}+4\sqrt{x+\sqrt{x^2-1}}-3< 0\)
a/ Đặt \(\sqrt{x^2-3x+5}=t>0\)
\(\Leftrightarrow t^2-5-t>1\Leftrightarrow t^2-t-6>0\)
\(\Rightarrow\left[{}\begin{matrix}t>3\\t< -2\left(l\right)\end{matrix}\right.\) \(\Rightarrow\sqrt{x^2-3x+5}>3\)
\(\Leftrightarrow x^2-3x+5>9\Leftrightarrow x^2-3x-4>0\Rightarrow\left[{}\begin{matrix}x>4\\x< -1\end{matrix}\right.\)
b/ ĐKXĐ: \(x\ge1\)
Đặt \(\sqrt[4]{x-\sqrt{x^2-1}}=t>0\Rightarrow\sqrt[4]{x+\sqrt{x^2-1}}=\frac{1}{t}\)
\(\Leftrightarrow t+\frac{4}{t^2}-3< 0\)
\(\Leftrightarrow t^3-3t^2+4< 0\)
\(\Leftrightarrow\left(t+1\right)\left(t-2\right)^2< 0\)
Do \(t>0\Rightarrow t+1>0\Rightarrow VT\ge0\Rightarrow\) BPT vô nghiệm
ĐKXĐ: \(x^2+x-1\ge0\)
\(\Rightarrow3x^2-x+1>3\sqrt{\left(x^2-x+1\right)\left(x^2+x-1\right)}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-x+1}=a>0\\\sqrt{x^2+x-1}=b\ge0\end{matrix}\right.\)
\(\Rightarrow2a^2+b^2>3ab\)
\(\Leftrightarrow\left(2a-b\right)\left(a-b\right)>0\)
\(\Rightarrow\left[{}\begin{matrix}2a< b\\a>b\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}2\sqrt{x^2-x+1}< \sqrt{x^2+x-1}\\\sqrt{x^2-x+1}>\sqrt{x^2+x-1}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4\left(x^2-x+1\right)< x^2+x-1\\x^2-x+1>x^2+x-1\end{matrix}\right.\)
\(\Leftrightarrow...\) (nhớ kết hợp ĐKXĐ ban đầu)
(2x-1)(x-3)-3x+1≤(x-1)(x+3)+x2-5
<=> 2x2-6x-x+3-3x+1≤x2+3x-x-3+x2-5
<=> -12x≤-6
<=>x≥\(\frac{1}{2}\)
Vậy nghiệm của bpt là S=[\(\frac{1}{2}\);+∞)
\(\left(x-3\right)\left(x+1\right)\left(2-3x\right)>0.\)
Vậy \(\left(x-3\right)\left(x+1\right)\left(2-3x\right)>0\) khi \(x\in\left(-\infty;-1\right)\cup\left(\dfrac{2}{3};3\right)\cup\left(3;+\infty\right).\)