Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(-2\le x\le3\)
\(\Leftrightarrow3x^3+3x^2-12x-12+x+4-3\sqrt{x+2}+5-x-3\sqrt{3-x}\ge0\)
\(\Leftrightarrow\left(x^2-x-2\right)\left(3x+6\right)+\frac{x^2-x-2}{x+4+3\sqrt{x+2}}+\frac{x^2-x-2}{5-x+3\sqrt{3-x}}\ge0\)
\(\Leftrightarrow\left(x^2-x-2\right)\left[3\left(x+2\right)+\frac{1}{x+4+3\sqrt{x+2}}+\frac{1}{5-x+3\sqrt{3-x}}\right]\ge0\)
\(\Leftrightarrow x^2-x-2\ge0\)
\(\Rightarrow\left[{}\begin{matrix}-2\le x\le-1\\2\le x\le3\end{matrix}\right.\)
ĐKXĐ: \(1\le x\le3\)
- Với \(1\le x< 2\Rightarrow\left\{{}\begin{matrix}VT\ge0\\VP< 0\end{matrix}\right.\) BPT luôn đúng
- Với \(x\ge2\) hai vế ko âm, bình phương:
\(-x^2+4x-3>x^2-4x+4\)
\(\Leftrightarrow2x^2-8x+7< 0\Rightarrow2\le x< \frac{4+\sqrt{2}}{2}\)
Vậy nghiệm của BPT là: \(1\le x< \frac{4+\sqrt{2}}{2}\)
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge-\dfrac{9}{2}\\x\ne0\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{\left(3+\sqrt{9+2x}\right)^2.2x^2}{\left(3-\sqrt{9+2x}\right)^2\left(3+\sqrt{9+2x}\right)^2}< x+21\)
\(\Leftrightarrow\dfrac{\left(3+\sqrt{9+2x}\right)^2.2x^2}{4x^2}< x+21\)
\(\Leftrightarrow\left(3+\sqrt{9+2x}\right)^2< 2x+42\)
\(\Leftrightarrow x+9+3\sqrt{9+2x}< x+21\)
\(\Leftrightarrow\sqrt{9+2x}< 4\)
\(\Leftrightarrow9+2x< 16\Rightarrow x< \dfrac{7}{2}\)
Vậy \(\left\{{}\begin{matrix}-\dfrac{9}{2}\le x< \dfrac{7}{2}\\x\ne0\end{matrix}\right.\)
ĐKXĐ: \(x\ge\frac{1}{4}\)
\(\sqrt{5x+1}\le3\sqrt{x}+\sqrt{4x-1}\)
\(\Leftrightarrow5x+1\le9x+4x-1+6\sqrt{4x^2-x}\)
\(\Leftrightarrow3\sqrt{4x^2-x}\ge1-4x\)
Do \(x\ge1\Rightarrow\left\{{}\begin{matrix}1-4x\le0\\\sqrt{4x^2-x}\ge0\end{matrix}\right.\) \(\Rightarrow\) BPT luôn đúng
Vậy nghiệm của BPT là \(x\ge\frac{1}{4}\)
b/ ĐKXĐ: \(x\ge4\)
\(\Leftrightarrow\sqrt{2\left(x^2-16\right)}+x-3>7-x\)
\(\Leftrightarrow\sqrt{2\left(x^2-16\right)}>10-2x\)
- Với \(x>5\Rightarrow\left\{{}\begin{matrix}VT\ge0\\VP< 0\end{matrix}\right.\) BPT luôn đúng
- Với \(x\le5\) bình phương 2 vế:
\(2\left(x^2-16\right)>4\left(x-5\right)^2\)
\(\Leftrightarrow x^2-20x+66< 0\)
\(\Rightarrow10-\sqrt{34}< x< 10+\sqrt{34}\)
Vậy nghiệm của BPT là \(x>10-\sqrt{34}\)
Nhóm BPT : 2(2x^2+1)-√(2x^2+1)(x+1) -6(x+1)>0
Đk dưới căn có nghĩa x>=-1.
Với x=-1 là một nghiệm--> nhận x=-1
Với x>-1, chia 2 vế cho x+1>0, Bđt ko đổi chiều.
2.(2x^2+1)/(x+1) - √(2x^2+1)/(x+1) - 6 >0
Đặt t=√(2x^2+1)/(x+1) , t>0, ta được
2t^2-t-6>0 --> t>2 ....bài toán dễ dàng rồi!
ĐK: \(-7\le x\le3\)
\(\sqrt{-x^2-4x+21}< x+3\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+3>0\\-x^2-4x+21< x^2+6x+9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>-3\\2x^2+10x-12>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>-3\\\left(x+6\right)\left(x-1\right)>0\end{matrix}\right.\)
\(\Leftrightarrow x>1\)
\(\Rightarrow x\in(1;3]\)