Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.Ta có : \(\dfrac{x^2-4x+4}{x^3-2x^2-4x+8}=\dfrac{\left(x-2\right)^2}{\left(x-2\right)^2\left(x+2\right)}=\dfrac{1}{x+2}\)
Để \(\dfrac{1}{x+2}>0\) thì 1 và x+2 cùng dấu
mà 1>0
=>x + 2 > 0 <=> x > 2
\(\Rightarrow S=\left\{x|x>2\right\}\)
b, Ta có : \(x^2\ge0\Rightarrow x^2+1>0\)
Để \(\dfrac{7-8x}{x^2+1}>0\) thì 7 - 8x và \(x^2+1\) cùng dấu
mà \(x^2+1>0\Rightarrow7-8x>0\Leftrightarrow x< \dfrac{7}{8}\)
\(\Rightarrow S=\left\{x|x< \dfrac{7}{8}\right\}\)
c. Ta có bảng xét dấu:
x | -\(\infty\) -1 -\(\dfrac{1}{2}\) +\(\infty\) |
x+1 | - 0 + + |
2x+1 | - - 0 + |
\(\dfrac{2x+1}{x+1}\) | + \(//\) - 0 + |
Lời giải:
Ta có: \(\frac{1}{x(x+1)}< 0\Leftrightarrow x(x+1)< 0\)
\(\Leftrightarrow \left[\begin{matrix} \left\{\begin{matrix} x>0\\ x+1< 0\end{matrix}\right.\\ \left\{\begin{matrix} x< 0\\ x+1>0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} 0< x< -1(\text{vô lý})\\ 0> x> -1\end{matrix}\right.\)
\(\Rightarrow 0> x> -1\)
Cách khác:
\(\dfrac{1}{x\left(x+1\right)}< 0\Leftrightarrow x\left(x+1\right)< 0\)
Ta có:
\(x-\left(x+1\right)=x-x-1=-1< 0\)
\(\Rightarrow x< x+1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x< 0\\x+1< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 0\\x>-1\end{matrix}\right.\)
\(\Rightarrow-1< 0< x\)
Mk thấy mấy cái này dễ mà, toàn trong sách giáo khoa hết á. Bạn cố gắng đọc và lm đi. Sắp lên lớp 9 rồi đó
a)\(\dfrac{2x^2+10}{1-x}\le0\Rightarrow1-x< 0\Leftrightarrow x>1\)
b) \(\dfrac{3x-4}{x+2}\ge4\Leftrightarrow\dfrac{3x-4}{x+2}-\dfrac{4\left(x+2\right)}{x+2}\ge0\Leftrightarrow\dfrac{-x-12}{x+2}\ge0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}-x-12\le0\\x+2< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-12\\x< -2\end{matrix}\right.\Leftrightarrow-12\le x< -2}}\\\left\{{}\begin{matrix}-x-12\ge0\\x+2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le-12\\x>-2\end{matrix}\right.\end{matrix}\right.\)\(S=\left\{x|-12\le x< -2\right\}\)
c) \(\dfrac{1}{x+4}\le\dfrac{1}{x-2}\Leftrightarrow\dfrac{6}{\left(x+4\right)\left(x-2\right)}\le0\Rightarrow\left(x+4\right)\left(x-2\right)< 0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+4>0\\x-2< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>-4\\x< 2\end{matrix}\right.\Leftrightarrow-4< x< 2}}\\\left\{{}\begin{matrix}x+4< 0\\x-2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< -4\\x>2\end{matrix}\right.\end{matrix}\right.\)
\(S=\left\{x|-4< x< 2\right\}\)
a,\(\Leftrightarrow9x^2+4x-3-9x^2-12x-4>0\)
\(\Leftrightarrow-8x-7>0\)
\(\Leftrightarrow-8x>7\)\(\Leftrightarrow x< -\dfrac{7}{8}\)
0 -7/8 (
\(b,\Leftrightarrow\dfrac{4x^2-2\left(2x^2+3x\right)}{4}< \dfrac{x-1}{4}\)
\(\Leftrightarrow4x^2-4x^2-6x< x-1\)
\(\Leftrightarrow-6x-x< x-1\)
\(\Leftrightarrow-7x< -1\Leftrightarrow x>\dfrac{1}{7}\)
Vậy....
1/7 0 (
1. \(\dfrac{x+1}{x-1}+\dfrac{3x}{x+1}=4\)
\(\Leftrightarrow\dfrac{\left(x+1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{3x\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}=\dfrac{4\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)
\(\cdotĐKXĐ:x-1\ne0\Leftrightarrow x\ne1
\)
\(x+1\ne0\Leftrightarrow x\ne-1\)
pt: x2 + x + x + 1 +3x2 - 3x = 4x2 + 4x - 4x -4
\(\Leftrightarrow\) x2 + 3x2 - 4x2 + x + x - 3x + 4x - 4x = -4 -1
\(\Leftrightarrow\) - 1x = - 5
\(\Leftrightarrow\) x = \(\dfrac{-5}{-1}\)
\(\Leftrightarrow\) x = 5 ( nhận )
Vậy pt có tập nghiệm S= \(\left\{5\right\}\)
2. \(\left|x+2\right|< 2x+10\)
Vì x + 2 < 2x + 10(1) nên x + 2 > 0
-(x + 2) < 2x + 10(2) nên - (x + 2) <0
pt(1): x + 2 < 2x + 10
\(\Leftrightarrow\) x - 2x < 10 -2
\(\Leftrightarrow\) -x < 8
\(\Leftrightarrow\) x > -8 ( nhận )
pt(2): -(x + 2) < 2x + 10
\(\Leftrightarrow\) - x - 2 < 2x + 10
\(\Leftrightarrow\) - x - 2x < 10 + 2
\(\Leftrightarrow\) -3x < 12
\(\Leftrightarrow\) x < \(\dfrac{12}{-3}\)
\(\Leftrightarrow\) x < -4 ( nhận)
Vậy bpt có tập nghiệm S= \(\left\{x\left|x< -4\right|\right\}\)
\(\left\{x\left|x>-8\right|\right\}\)
\(\text{a) }\left(x^2-9\right)^2-9\left(x-3\right)^2=0\\ \Leftrightarrow\left(x+3\right)^2\left(x-3\right)^2-9\left(x-3\right)^2=0\\ \Leftrightarrow\left(x^2+6x+9-9\right)\left(x-3\right)^2=0\\ \Leftrightarrow\left(x^2+6x\right)\left(x-3\right)^2=0\\ \Leftrightarrow x\left(x+6\right)\left(x-3\right)^2=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x+6=0\\\left(x-3\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x+6=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-6\\x=3\end{matrix}\right.\)
Vậy phương trình có tập nghiệm \(S=\left\{0;3;-6\right\}\)
\(\text{b) }\dfrac{3x^2+7x-10}{x}=0\\ ĐKXĐ:x\ne0\\ \Rightarrow3x^2+7x-10=0\\ \Leftrightarrow3x^2-3x+10x-10=0\\ \Leftrightarrow\left(3x^2-3x\right)+\left(10x-10\right)=0\\ \Leftrightarrow3x\left(x-1\right)+10\left(x-1\right)=0\\ \Leftrightarrow\left(3x+10\right)\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}3x+10=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-10\\x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{10}{3}\\x=1\end{matrix}\right.\left(T/m\right)\)
Vậy phương trình có tập nghiệm \(S=\left\{-\dfrac{10}{3};1\right\}\)
\(\text{c) }x+\dfrac{2x+\dfrac{x-1}{5}}{3}=1-\dfrac{3x+\dfrac{1-2x}{3}}{5}\left(\text{Chữa đề}\right)\\ \Leftrightarrow15x+5\left(2x+\dfrac{x-1}{5}\right)=15-3\left(3x+\dfrac{1-2x}{3}\right)\\ \Leftrightarrow15x+10x+\left(x-1\right)=15-9x+\left(1-2x\right)\\ \Leftrightarrow15x+10x+x-1=15-9x+1-2x\\ \Leftrightarrow26x+11x=16+1\\ \Leftrightarrow37x=17\\ \Leftrightarrow x=\dfrac{17}{37}\\ \)
Vậy phương trình có nghiệm \(x=\dfrac{17}{37}\)
Bạn kia sai rồi tớ sửa lại cho :
a) ( 2x - 4)( x + 3) > 0
Lập bảng xét dấu : x 2x-4 x+3 Tích số -3 2 0 0 0 0 - - + - + + + - +
Vậy , nghiệm của BPT : x < -3 hoặc : x > 2
b) Lập bảng xét dấu :
x x-1 x+3 Thương -3 1 0 0 - - + - + + 0 + - + Vậy , x < -3 hoặc x >1
Giải bpt sau:
\(\dfrac{x+3}{2011}\)+\(\dfrac{x+2}{2012}\)+\(\dfrac{x+1}{2013}\)≥\(\dfrac{3x}{2014}\)
\(\dfrac{x+3}{2011}+\dfrac{x+2}{2012}+\dfrac{x+1}{2013}\ge\dfrac{3x}{2014}\)
\(\dfrac{x+3}{2011}+1+\dfrac{x+2}{2012}+1+\dfrac{x+1}{2013}+1\ge\dfrac{3x}{2014}+3\)
\(\dfrac{x+2014}{2011}+\dfrac{x+2014}{2012}+\dfrac{x+2014}{2013}\ge3\left(\dfrac{x+2014}{2014}\right)\)
\(\left(x+2014\right)\left(\dfrac{1}{2011}+\dfrac{1}{2012}+\dfrac{1}{2013}-\dfrac{3}{2014}\right)\ge0\)
Mà \(\left(\dfrac{1}{2011}+\dfrac{1}{2012}+\dfrac{1}{2013}-\dfrac{3}{2014}\right)>0\) (bạn có thể chứng minh nếu thích )
Nên \(x+2014\ge0\)
\(\Leftrightarrow x\ge-2014\)
Vậy
a: \(\dfrac{2x-6}{x+2}>0\)
=>x-3>0 hoặc x+2<0
=>x>3 hoặc x<-2
b:
Theo BXD, ta có: f(x)>0
=>-3<x<1 hoặc x>2
Câu 1:
a) \(x-\dfrac{5x+2}{6}=\dfrac{7-3x}{4}\)
\(\Leftrightarrow\dfrac{12x-2\left(5x+2\right)}{12}=\dfrac{3\left(7-3x\right)}{12}\)
\(\Leftrightarrow12x-10x-4=21-9x\)
\(\Leftrightarrow11x=25\)
\(\Leftrightarrow x=\dfrac{25}{11}\)
b) \(\left(3x-1\right)\left(x-3\right)\left(7-2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\Leftrightarrow x=\dfrac{1}{3}\\x-3=0\Leftrightarrow x=3\\7-2x=0\Leftrightarrow x=3,5\end{matrix}\right.\)
c) \(\left|3x\right|=4x+8\) (1)
Ta có: \(\left|3x\right|=3x\Leftrightarrow3x\ge0\Leftrightarrow x\ge0\)
\(\left|3x\right|=-3x\Leftrightarrow3x< 0\Leftrightarrow x< 0\)
Với \(x\ge0\), phương trình (1) có dạng:
\(3x=4x+8\Leftrightarrow-x=8\Leftrightarrow x=-8\)
(không thoả mãn điều kiện) \(\rightarrow\) loại
Với \(x< 0\), phương trình (1) có dạng:
\(-3x=4x+8\Leftrightarrow-7x=8\Leftrightarrow x=-\dfrac{8}{7}\)
(thoả mãn điều kiện) \(\rightarrow\) nhận
Vậy phương trình đã cho có 1 nghiệm \(x=-\dfrac{8}{7}\)
Câu 2:
\(2x\left(6x-1\right)\ge\left(3x-2\right)\left(4x+3\right)\)
\(\Leftrightarrow12x^2-2x\ge12x^2+9x-8x-6\)
\(\Leftrightarrow-3x\ge-6\)
\(\Leftrightarrow x\le2\)
Vậy bất phương trình đã cho có nghiệm \(x\le2\)
\(bpt\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1\ge0\\4-x>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-1\le0\\4-x< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge1\\x< 4\end{matrix}\right.\\\left\{{}\begin{matrix}x\le1\\x>4\end{matrix}\right.\end{matrix}\right.\Leftrightarrow1\le x< 4\)
Vậy .......
\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1\ge0\\4-x>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-1\le0\\4-x< 0\end{matrix}\right.\end{matrix}\right.\)⇔\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge1\\x< 4\end{matrix}\right.\\\left\{{}\begin{matrix}x\le1\\x>4\end{matrix}\right.\end{matrix}\right.\)
Vậy....