Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 2
ta có \(\left(\sqrt{8a^2+1}+\sqrt{8b^2+1}+\sqrt{8c^2+1}\right)^2\)
\(=\left(\sqrt{a}.\sqrt{\frac{8a^2+1}{a}}+\sqrt{b}.\sqrt{\frac{8b^2+1}{b}}+\sqrt{c}.\sqrt{\frac{8c^2+1}{c}}\right)^2\)\(=\left(A\right)\)
Áp dụng bất đẳng thức Bunhiacopxki ta có;
\(\left(A\right)\le\left(a+b+c\right)\left(8a+\frac{1}{a}+8b+\frac{1}{b}+8c+\frac{8}{c}\right)\)
\(=\left(a+b+c\right)\left(9a+9b+9c\right)=9\left(a+b+c\right)^2\)
\(\Rightarrow3\left(a+b+c\right)\ge\sqrt{8a^2+1}+\sqrt{8b^2+1}+\sqrt{8c^2+1}\)(đpcm)
Dấu \(=\)xảy ra khi \(a=b=c=1\)
b) đặt \(\sqrt{3x+1}=a\)(\(a\ge0\))
\(PT\Leftrightarrow\dfrac{a^2-1}{\sqrt{a^2+9}}+1=a\)
\(\Leftrightarrow\left(a-1\right)\left(1-\dfrac{a+1}{\sqrt{a^2+9}}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a+1=\sqrt{a^2+9}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a=4\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)(tm)
c) bunyalovsky:
\(VT^2\le2\left(7-x+x-5\right)=4\)
\(\Leftrightarrow VT\le2\)
\(VF=\left(x-6\right)^2+2\ge2\)
Dấu = xảy ra khi x=6
- Với \(x< 7\Rightarrow\left\{{}\begin{matrix}VT\ge0\\VP< 0\end{matrix}\right.\) \(\Rightarrow VT>VP\Rightarrow\) BPT đúng \(\forall x< 7\)
- Với \(x\ge7\Rightarrow-x^2+3x+1< 0\) bất phương trình trở thành:
\(x^2-3x-1>x-7\Leftrightarrow x^2-4x+6>0\Leftrightarrow\left(x-2\right)^2+2>0\) (luôn đúng)
Vậy bất phương trình đã cho đúng \(\forall x\in R\)