Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giải các bpt sau :
a) \(-4\le\frac{x^2-2x-7}{x^2+1}\le1\)
b) \(-1< \frac{10x^2-3x-2}{-x^2+3x-2}< 1\)
\(\frac{1}{x+2}-\frac{x+2}{3x-5}\ge0\)
\(\Leftrightarrow\frac{-x^2-x-9}{\left(x+2\right)\left(3x-5\right)}\ge0\)
\(\Leftrightarrow\left(x+2\right)\left(3x-5\right)< 0\) (do \(-x^2-x-9< 0;\forall x\))
\(\Rightarrow-2< x< \frac{5}{3}\)
2/ ĐKXĐ: \(1\le x\le3\)
\(\Leftrightarrow-x^2+4x-3\le\left(x-1\right)^2\)
\(\Leftrightarrow2x^2-6x+4\ge0\Rightarrow\left[{}\begin{matrix}x\ge2\\x\le1\end{matrix}\right.\)
Kết hợp ĐKXĐ: \(\left[{}\begin{matrix}x=1\\2\le x\le3\end{matrix}\right.\)
giải bpt
a) \(x^2-3x-\sqrt{x^2-3x+5}>1\)
b) \(\sqrt[4]{x-\sqrt{x^2-1}}+4\sqrt{x+\sqrt{x^2-1}}-3< 0\)
a/ Đặt \(\sqrt{x^2-3x+5}=t>0\)
\(\Leftrightarrow t^2-5-t>1\Leftrightarrow t^2-t-6>0\)
\(\Rightarrow\left[{}\begin{matrix}t>3\\t< -2\left(l\right)\end{matrix}\right.\) \(\Rightarrow\sqrt{x^2-3x+5}>3\)
\(\Leftrightarrow x^2-3x+5>9\Leftrightarrow x^2-3x-4>0\Rightarrow\left[{}\begin{matrix}x>4\\x< -1\end{matrix}\right.\)
b/ ĐKXĐ: \(x\ge1\)
Đặt \(\sqrt[4]{x-\sqrt{x^2-1}}=t>0\Rightarrow\sqrt[4]{x+\sqrt{x^2-1}}=\frac{1}{t}\)
\(\Leftrightarrow t+\frac{4}{t^2}-3< 0\)
\(\Leftrightarrow t^3-3t^2+4< 0\)
\(\Leftrightarrow\left(t+1\right)\left(t-2\right)^2< 0\)
Do \(t>0\Rightarrow t+1>0\Rightarrow VT\ge0\Rightarrow\) BPT vô nghiệm
ĐKXĐ: \(x^2+x-1\ge0\)
\(\Rightarrow3x^2-x+1>3\sqrt{\left(x^2-x+1\right)\left(x^2+x-1\right)}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-x+1}=a>0\\\sqrt{x^2+x-1}=b\ge0\end{matrix}\right.\)
\(\Rightarrow2a^2+b^2>3ab\)
\(\Leftrightarrow\left(2a-b\right)\left(a-b\right)>0\)
\(\Rightarrow\left[{}\begin{matrix}2a< b\\a>b\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}2\sqrt{x^2-x+1}< \sqrt{x^2+x-1}\\\sqrt{x^2-x+1}>\sqrt{x^2+x-1}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4\left(x^2-x+1\right)< x^2+x-1\\x^2-x+1>x^2+x-1\end{matrix}\right.\)
\(\Leftrightarrow...\) (nhớ kết hợp ĐKXĐ ban đầu)
1) ĐKXĐ: \(\left[{}\begin{matrix}x\le1\\x\ge2\end{matrix}\right.\)
ta có: (-6).\(\sqrt{6x^2-18x+12}\) > \(6x^2-18x-60\)
⇔ \(6x^2-18x+12\) + \(2.3.\sqrt{6x^2-18x+12}+9-81\) > 0
⇔ \(\left(\sqrt{6x^2-18x+12}+3\right)^2-9^2\) > 0
⇔ \(\left(\sqrt{6x^2-18x+12}+12\right).\left(\sqrt{6x^2-18x+12}-6\right)\) > 0
⇔ \(\sqrt{6x^2-18x+12}-6\) > 0
⇔ \(\sqrt{6x^2-18x+12}>6\)
⇔\(6x^2-18x+12>36\)
⇔ \(6x^2-18x-24>0\)
⇔\(\left[{}\begin{matrix}x< -1\\x>4\end{matrix}\right.\)
đối chiếu ĐKXĐ ban đầu ta được: x ϵ (-∞;-1) \(\cup\)(4;+∞)
b) ĐKXĐ: \(\forall x\) ϵ R
\(\left(x-2\right)\sqrt{x^2+4}-\left(x-2\right)\left(x+2\right)\le0\)
⇔\(\left(x-2\right)\left(\sqrt{x^2+4}-x-2\right)\le0\)
⇔\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\\sqrt{x^2+4}-x-2\le0\end{matrix}\right.\\\left\{{}\begin{matrix}x\le2\\\sqrt{x^2+4}-x-2\ge0\end{matrix}\right.\end{matrix}\right.\)⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\x^2+4\le x^2+4x+4\end{matrix}\right.\\\left\{{}\begin{matrix}x\le2\\x^2+4\ge x^2+4x+4\end{matrix}\right.\end{matrix}\right.\)
⇔\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\x\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x\le2\\x\le0\end{matrix}\right.\end{matrix}\right.\)⇔\(\left[{}\begin{matrix}x\ge2\\x\le0\end{matrix}\right.\)
Đối chiếu ĐKXĐ ta được x ϵ ( -∞;0) \(\cup\)( 2; +∞)
câu cuối r , mấy bạn giúp nah
sắp phải đi hc r