Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5x-\frac{3-2x}{2}>\frac{7x-5}{2}+x\)
\(\Leftrightarrow\) \(\frac{10x}{2}-\frac{3-2x}{2}>\frac{7x-5}{2}+\frac{2x}{2}\)
\(\Rightarrow\) \(10x-3+2x>7x-5+2x\)
\(\Leftrightarrow\) \(10x+2x-7x-2x>-5+3\)
\(\Leftrightarrow\) \(3x>-2\)
\(\Leftrightarrow\) \(x>-\frac{2}{3}\)
Vậy ................
\(\frac{10x-5}{6}+\frac{x+3}{4}\ge\frac{7x+3}{2}-\frac{12-x}{3}\)
<=>\(\frac{2\left(10x-5\right)}{12}+\frac{3\left(x+3\right)}{12}\ge\frac{6\left(7x+3\right)}{12}-\frac{4\left(12-x\right)}{12}\)
<=>2(10x-5)+3(x+3)\(\ge\)6(7x+3)-4(12-x)
<=>20x-10+3x+9\(\ge\)42x+18-48+4x
<=>23x-1\(\ge\)46x-30
<=>23x-46x\(\ge\)-30+1
<=>-23x\(\ge\)-29
<=>x\(\le\)\(\frac{29}{23}\)
Vậy S={x I x\(\le\frac{29}{23}\)}
a) \(\frac{x+2}{-5}\ge0\Leftrightarrow x+2\le0\Leftrightarrow x\le-2\)
b) Điều kiện : \(x\ne3\)
\(\frac{x-1}{x-3}>1\Leftrightarrow\frac{x-1-x+3}{x-3}>0\Leftrightarrow\frac{2}{x-3}>0\Leftrightarrow x-3>0\Leftrightarrow x>3\)
Vậy BĐT luôn đúng với mọi \(x>3\)
a)\(\frac{x+2}{-5}\ge0\Leftrightarrow x+2\ge0\Leftrightarrow x\ge-2\)
b)\(\frac{x-1}{x-3}>1\Leftrightarrow\frac{x-1}{x-3}-1>0\Leftrightarrow\frac{2}{x-3}>0\Leftrightarrow x=\frac{2}{0}+3\)=> vô nghiệm
ĐKXD: X khác 3
b, \(\frac{5x+1}{x+3}-\frac{3x-2}{x-1}=\frac{5.\left(x+3\right)-14}{x+3}-\frac{3\left(x-1\right)+1}{x-1}=5-\frac{14}{x+3}-3+\frac{1}{x-1}=2+\left(\frac{1}{x-1}-\frac{14}{x+3}\right)=2+\left(\frac{x+3-14x+14}{x^2-x+3x-3}\right)=2+\left(\frac{17-13x}{x^2+2x-3}\right)>2\)
a. \(x^2-4x+3\le0\)
\(\Leftrightarrow\left(x^2-x\right)-\left(3x-3\right)\le0\)
\(\Leftrightarrow x\left(x-1\right)-3\left(x-1\right)\le0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)\le0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1\le0\\x-3\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-1\ge0\\x-3\le0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\le1\\x\ge3\end{matrix}\right.\left(Vo.li\right)\\\left\{{}\begin{matrix}x\ge1\\x\le3\end{matrix}\right.\end{matrix}\right.\)
Vậy \(1\le x\le3\)
b. \(9x^2-6x\ge0\)
\(\Leftrightarrow3x\left(3x-2\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}3x\ge0\\3x-2\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}3x\le0\\3x-2\le0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x\ge\frac{2}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le0\\x\le\frac{2}{3}\end{matrix}\right.\end{matrix}\right.\)
Vậy \(0\le x\le\frac{2}{3}\)
c. Câu c cậu tự làm nha, tớ đang có việc. Quy đồng lên rồi tính bình thường thôi.
\(3x-\frac{x+2}{3}\le\frac{3\left(x-2\right)}{2}+5-x\)
\(\Leftrightarrow\frac{18x}{6}-\frac{2\left(x+2\right)}{6}\le\frac{9\left(x-2\right)}{6}+\frac{30}{6}-\frac{6x}{6}\)
\(\Rightarrow18x-2x-4\le9x-18+30-6x\)
\(\Leftrightarrow16x-4\le3x+12\)
\(\Leftrightarrow13x\le16\)
\(\Leftrightarrow x\le\frac{16}{13}\)
Vậy bất phương trình có tập nghiệm là: \(S=\left\{x|x\le\frac{16}{13}\right\}\)
a)\(\frac{3x-2}{5}\ge\frac{x}{2}+0,8\) va \(1-\frac{2x-5}{6}>\frac{3-x}{4}\)
\(\cdot\frac{3x-2}{5}\ge\frac{x}{2}+0,8\)
\(=\frac{2\left(3x-2\right)}{10}\ge\frac{5x}{10}+\frac{8}{10}\)
\(\Rightarrow2\left(3x-2\right)\ge5x+8\)
\(=6x-4\ge5x+8\)
\(=6x-5x\ge8+4\)
\(x\ge12\)(1)
\(\cdot1-\frac{2x-5}{6}>\frac{3-x}{4}\)
\(=\frac{12}{12}-\frac{2\left(2x-5\right)}{12}>\frac{3\left(3-x\right)}{12}\)
\(\Rightarrow12-2\left(2x-5\right)>3\left(3-x\right)\)
\(=12-4x+10>9-3x\)
\(=-4x+3x>9-12-10\)
\(=-x>-13\)
\(=x< 13\) (2)
Từ (1) và (2) => \(13>x\ge12\)=> x=12
ĐK: \(x\ne-3\)
\(\frac{x-5}{x+3}>3\Rightarrow x-5>3\left(x+3\right)\)
\(\Rightarrow x-5>3x+9\Rightarrow-5-9>3x-x\Rightarrow-14>2x\Rightarrow x< -7\)
Vậy tập nghiệm của BPT: \(S=\left\{x< -7\right\}\)