Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{x}{x-3}>1\) ( ĐKXĐ : \(x\ne3\) )
\(\Leftrightarrow\frac{x}{x-3}-1>0\)
\(\Leftrightarrow\frac{x-x+3}{x-3}>0\)
\(\Leftrightarrow\frac{3}{x-3}>0\)
\(\Leftrightarrow x-3>0\)
\(\Leftrightarrow x>3\)
Vậy : \(x>3\) thỏa mãn đề.
\(\frac{x}{x-3}-1>0\)
<=> \(\frac{3}{x-3}>0\)
Vì 3 > 0 nên để \(\frac{3}{x-3}>0\) thì x - 3 > 0 <=> x > 3
\(\frac{3x-1}{x-1}-\frac{2x+5}{x+3}+\frac{1}{x^2+2x-3}=1.\)
\(ĐK:\hept{\begin{cases}x-1\ne0\\x+3\ne\\x^2+2x-3\ne0\end{cases}0}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne\Leftrightarrow-3\end{cases}}\)
\(\Leftrightarrow\left(3x-1\right)\left(x+3\right)-\left(2x+5\right)\left(x-1\right)+4-x^2-2x+3=0\)
\(\Leftrightarrow3x^2+9x-x-3-2x^2+2x-5x+5+4-x^2-2x+3=0\)
\(\Leftrightarrow3x+9=0\)
\(\Leftrightarrow3x=-9\Leftrightarrow x=-3\) (loại)
Vậy pt vô No
b, \(\frac{5x+1}{x+3}-\frac{3x-2}{x-1}=\frac{5.\left(x+3\right)-14}{x+3}-\frac{3\left(x-1\right)+1}{x-1}=5-\frac{14}{x+3}-3+\frac{1}{x-1}=2+\left(\frac{1}{x-1}-\frac{14}{x+3}\right)=2+\left(\frac{x+3-14x+14}{x^2-x+3x-3}\right)=2+\left(\frac{17-13x}{x^2+2x-3}\right)>2\)
a) \(\frac{x+2}{-5}\ge0\Leftrightarrow x+2\le0\Leftrightarrow x\le-2\)
b) Điều kiện : \(x\ne3\)
\(\frac{x-1}{x-3}>1\Leftrightarrow\frac{x-1-x+3}{x-3}>0\Leftrightarrow\frac{2}{x-3}>0\Leftrightarrow x-3>0\Leftrightarrow x>3\)
Vậy BĐT luôn đúng với mọi \(x>3\)
a)\(\frac{x+2}{-5}\ge0\Leftrightarrow x+2\ge0\Leftrightarrow x\ge-2\)
b)\(\frac{x-1}{x-3}>1\Leftrightarrow\frac{x-1}{x-3}-1>0\Leftrightarrow\frac{2}{x-3}>0\Leftrightarrow x=\frac{2}{0}+3\)=> vô nghiệm
ĐKXD: X khác 3
a) \(\left(\frac{x+2}{98}+1\right)+\left(\frac{x+4}{96}+1\right)=\left(\frac{x+6}{94}+1\right)+\left(\frac{x+8}{92}+1\right)\)
\(\Leftrightarrow\frac{x+100}{98}+\frac{x+100}{96}=\frac{x+100}{94}+\frac{x+100}{92}\)
\(\Leftrightarrow\left(x+100\right)\left(\frac{1}{98}+\frac{1}{96}-\frac{1}{94}-\frac{1}{92}\right)=0\)
\(\Leftrightarrow x+100=0\) ( do \(\frac{1}{98}+\frac{1}{96}-\frac{1}{94}-\frac{1}{92}\ne0\) )
\(\Leftrightarrow x=-100\)
b) \(3x^2+2x-1=0\)
\(\Leftrightarrow3x^2+3x-x-1=0\)
\(\Leftrightarrow3x\left(x+1\right)-\left(x+1\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{3}\\x=-1\end{matrix}\right.\)
\(\frac{x-1}{x-3}>1\)
\(\Leftrightarrow\frac{x-3+2}{x-3}>1\)
\(\Leftrightarrow\frac{x-3}{x-3}+\frac{2}{x-3}>1\)
\(\Leftrightarrow1+\frac{2}{x-3}>1\)
\(\Leftrightarrow\frac{2}{x-3}>0\)
\(\Leftrightarrow x-3>0\)
\(\Leftrightarrow x>3\)
Vậy bất phương trình có nghiệm là x>3
\(\frac{x-1}{x-3}>1\\ \Leftrightarrow\frac{x-3}{x-3}+\frac{2}{x-3}>1\\ \Leftrightarrow1+\frac{2}{x-3}>1\\ \Leftrightarrow\frac{2}{x-3}>0\\ \Leftrightarrow x-3>0\\ \Leftrightarrow x>3\)