\(a^4+b^4\ge2\)với a+b = 2

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2019

Tui mới học lớp 5 thui anh/chị ạ

23 tháng 11 2019

Lê thị hương giang Có ai bắt bạn giải đâu mà lớp 5 các kiểu ????

Áp dụng BĐT phụ sau:

\(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\left(true\right)\)

Ta có:

\(a^4+b^4\ge\frac{\left(a^2+b^2\right)^2}{2}\ge\frac{\left[\frac{\left(a+b\right)^2}{2}\right]^2}{2}=\frac{\left(a+b\right)^4}{8}=2\)

Dấu "=" xảy ra tại a=b=1

27 tháng 3 2018

Áp dụng BĐT   Bunyakovsky   ta có:

      \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)       

\(\Leftrightarrow\)\(\left(a+b\right)^4\le4\left(a^2+b^2\right)^2\)     (1)            (chỗ này mk bình phương 2 vế nên nhé)

Dấu "="   xảy ra   \(\Leftrightarrow\)  \(a=b=1\)

Áp dụng BĐT   Bunyakovsky   ta có:

    \(\left(a^2+b^2\right)^2\le2\left(a^4+b^4\right)\)

\(\Leftrightarrow\)\(4\left(a^2+b^2\right)^2\le8\left(a^4+b^4\right)\)    (2)

Dấu "=" xảy ra  \(\Leftrightarrow\)\(a=b=1\)

Từ (1) và (2) suy ra:    \(\left(a+b\right)^4\le8\left(a^4+b^4\right)\)

                         \(\Leftrightarrow\)\(16\le8\left(a^4+b^4\right)\)

                        \(\Leftrightarrow\)  \(a^4+b^4\ge2\)

Dấu "=" xảy ra   \(\Leftrightarrow\)\(a=b=1\)

P/S: trình bày sai chỗ nào thì m.n góp ý nha

26 tháng 4 2018

a) Áp dụng BĐT Cô - si , ta có :

x2 + y2 ≥ 2xy ( x > 0 ; y > 0 )

⇒ a2 + b2 ≥ 2ab ( a > 0 ; b > 0)

\(\dfrac{a^2+b^2}{ab}\) ≥ 2

\(\dfrac{a}{b}+\dfrac{b}{a}\) ≥ 2

b) Áp dụng BĐT Cô - si :

x + y ≥ 2\(\sqrt{\dfrac{1}{xy}}\) ( x > 0 ; y > 0 )

\(\dfrac{1}{a}+\dfrac{1}{b}\) ≥ 2.\(\sqrt{\dfrac{1}{ab}}\) ( a > 0 ; b > 0)

⇔ ( a + b)\(\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\) ≥ 2.\(\sqrt{\dfrac{1}{ab}}\).\(2\sqrt{ab}\)

⇔( a + b)\(\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\) ≥ 4

\(\dfrac{1}{a}+\dfrac{1}{b}\)\(\dfrac{4}{a+b}\)

26 tháng 4 2018

c) Áp dụng BĐT Cô - si , ta có :

x2 + y2 ≥ 2xy ( x > 0 ; y > 0 )

⇒ a2 + b2 ≥ 2ab ( a > 0 ; b > 0 )

⇔ 2a2 + 2b2 ≥ a2 + 2ab + b2

⇔ 2( a2 + b2 ) ≥ ( a + b)2

1 tháng 9 2018

Ta có a>=0 ; b>=0

=> √a >=0 ; √b >=0

<=> (√a -√b)2>=0

<=> a-2√ab + b>=0

<=> a+ b>=2√ab

Vậy bất đẳng thức được CM

17 tháng 3 2019

a, \(a^4+b^4-a^3b-ab^3=a^3\left(a-b\right)-b^3\left(a-b\right)\)

\(=\left(a-b\right)\left(a^3-b^3\right)=\left(a-b\right)^2\left(a^2+ab+b^2\right)\)

Mà \(\hept{\begin{cases}\left(a-b\right)^2\ge0\forall a;b\\a^2+ab+b^2=\left(a+\frac{1}{2}b\right)^2+\frac{3}{4}b^2\ge0\forall a;b\end{cases}}\)

\(\Rightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)

\(\Rightarrow a^4+b^4-a^3b-ab^3\ge0\Leftrightarrow a^4+b^4\ge a^3b+ab^3\)

Dấu "=" xảy ra khi a = b

b, \(a^3-3a^2+4a+1=a\left(a^2-4a+4\right)+a^2+1=a\left(a-2\right)^2+a^2+1>0\left(\forall a>0\right)\)

c, \(a^4+b^2+2-4ab=\left(a^4-2a^2b^2+b^4\right)+\left(2a^2b^2-4ab+2\right)\)

\(=\left(a^2-b^2\right)^2+2\left(ab-1\right)^2\ge0\)

\(\Rightarrow a^4+b^4+2\ge4ab\)

Dấu "=" xảy ra khi \(\orbr{\begin{cases}a=b=1\\a=b=-1\end{cases}}\)

18 tháng 3 2019

thank you nhá

1 tháng 8 2019

#)Giải :

Áp dụng BĐT Cauchy cho hai số không âm :

\(\frac{\left(a+b\right)^2}{2}+\frac{a+b}{4}=\frac{a+b}{2}\left(a+b+\frac{1}{2}\right)\ge\sqrt{ab}\left(a+b+\frac{1}{2}\right)\left(1\right)\)

Ta có: \(\sqrt{ab}\left(a+b+\frac{1}{2}\right)\ge a\sqrt{b}+b\sqrt{a}\Leftrightarrow\sqrt{ab}\left(a+b+\frac{1}{2}\right)\ge\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)\)

\(\Leftrightarrow a+b+\frac{1}{2}\ge\sqrt{a}+\sqrt{b}\Leftrightarrow a-\sqrt{a}+\frac{1}{4}+b-\sqrt{b}+\frac{1}{4}\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\frac{1}{2}\right)^2+\left(\sqrt{b}-\frac{1}{2}\right)^2\ge0\Leftrightarrow\sqrt{ab}\left(a+b+\frac{1}{2}\right)\ge a\sqrt{b}+b\sqrt{a}\left(2\right)\)

Từ (1) và (2) \(\Rightarrowđpcm\)

2 tháng 5 2019

đặt a2+4 là x; b2+5 là y

ta có \(\frac{a^2+4}{b^2+5}+\frac{b^2+5}{a^2+4}\ge2\)

\(\frac{x}{y}+\frac{y}{x}\ge2\)

\(\frac{x^2+y^2}{xy}\ge2\)

⇔ x2 + y2 ≥ 2xy

⇔ x2 - 2xy + y2 ≥ 0

⇔ ( x - y )2 ≥ 0 (luôn luôn đúng )

vậy \(\frac{a^2+4}{b^2+5}+\frac{b^2+5}{a^2+4}\ge2\)

25 tháng 8 2017

có bđt x² + y² ≥ (x+y)²/2 (*) 
cm: (*) <=> 2x²+2y² ≥ x²+y²+2xy <=> x²+y²-2xy ≥ 0 <=> (x-y)² ≥ 0 bđt đúng 
dấu "=" khi x = y 

ad bđt (*) vào bài toán: 
a^4 + b^4 ≥ (a²+b²)²/2 ≥ [(a+b)²/2]²/2 = [(2²)/2]²/2 = 2 (đpcm) ; dấu "=" khi a = b = 1

16 tháng 2 2019

Bài 1:

a) \(\)Ta có: x2 + y2 + z2 + 3 - 2(x + y + z) = (x2 - 2x + 1) + (y2 - 2y + 1) + (z2 - 2z + 1) = (x - 1)2 + (y - 1)2 + (z - 1)2 ≥ 0

=> x2 + y2 + z2 + 3 ≥ 2(x + y + z)

b) Áp dụng liên tiếp bất đẳng thức Cô-si:

\(\left(a^4+b^4\right)+\left(c^4+d^4\right)\ge2\sqrt{a^4b^4}+2\sqrt{c^4d^4}=2\left(a^2b^2+c^2d^2\right)\ge2.2.\sqrt{a^2b^2c^2d^2}=4\left|abcd\right|\ge4abcd\)

Dấu "=" xảy ra <=> a = b = c = d

Bài 2:

Ta sẽ chứng minh ab + bc + ca ≤ \(\dfrac{1}{3}\)(a + b + c)2 = 0

<=> 3ab + 3bc + 3ca ≤ (a + b + c)2

<=> 3ab + 3bc + 3ca ≤ a2 + b2 + c2 + 2ab + 2bc + 2ca

<=> ab + bc + ca ≤ a2 + b2 + c2

Thật vậy:

(a - b)2 + (b - c)2 + (c - a)2 ≥ 0

<=> a2 - 2ab + b2 + b2 - 2bc + c2 + c2 - 2ca + a2 ≥ 0

<=> 2a2 + 2b2 + 2c2 ≥ 2ab + 2bc + 2ca

<=> a2 + b2 + c2 ≥ ab + bc + ca

Dấu "=" xảy ra <=> a = b = c = 0

18 tháng 2 2019

@Nguyễn Thị Ngọc Thơ tưởng bữa trước bảo là tên cặn bã cơ mà =.='', giờ sv là sao -.-

Cơ mà bỏ cái thói like dạo rồi à ?

27 tháng 3 2018

a)\(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+2ab+2bc+2ca\)

\(\Leftrightarrow3a^2+3b^2+3c^2-a^2-b^2-c^2-2ab-2bc-2ca\ge0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(luôn đúng)

b,c tương tự

d)Áp dụng bđt AM-GM ta được

\(a^4+a^4+b^4+c^4\ge4\sqrt[4]{a^4a^4b^4c^4}=4a^2bc\)

TT\(\Rightarrow a^4+b^4+b^4+c^4\ge4ab^2c\)

\(a^4+b^4+c^4+c^4\ge4abc^2\)

Cộng vế theo vế ta được \(4\left(a^4+b^4+c^4\right)\ge4\left(a^2bc+ab^2c+abc^2\right)\)

\(\Leftrightarrow a^4+b^4+c^4\ge abc\left(a+b+c\right)\left(đpcm\right)\)

27 tháng 3 2018

d)

\(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)

\(\Leftrightarrow a^4+b^4+c^4-a^2bc-ab^2c-abc^2\ge0\)

\(\Leftrightarrow2a^4+2b^4+2c^4-2a^2bc-2ab^2c-2abc^2\ge0\)

\(\Leftrightarrow\left(a^2-b^2\right)^2+2a^2b^2+\left(b^2-c^2\right)^2+2b^2c^2+\left(c^2-a^2\right)^2+2a^2c^2-2a^2bc-2b^2ac-2c^2ab\ge0\)

\(\Leftrightarrow\left(a^2-b^2\right)^2+\left(b^2-c^2\right)^2+\left(c^2-a^2\right)^2+\left(a^2b^2+b^2c^2-2b^2ac\right)+\left(b^2c^2+c^2a^2-2c^2abc\right)+\left(a^2b^2+c^2a^2-2a^2ab\right)\ge0\)

\(\Leftrightarrow\left(a^2-b^2\right)^2+\left(b^2-c^2\right)^2+\left(c^2-a^2\right)^2+\left(ab-bc\right)^2+\left(bc-ac\right)^2+\left(ab-ac\right)^2\ge0\)

Luôn đúng với mọi a , b , c