Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-5x+6\le0\)
\(\Leftrightarrow x^2-2x-3x+6\le0\)
\(\Leftrightarrow x.\left(x-2\right)-3.\left(x-2\right)\le0\)
\(\Leftrightarrow\left(x-2\right)\left(x-3\right)\le0\)
\(\text{Mà }x-2>x-3\text{ nên :}\)
\(x-2\ge0\text{ và }x-3\le0\)
\(\Leftrightarrow x\ge2\text{ và }x\le3\Rightarrow2\le x\le3\)
\(x^2-5x+6>0\Leftrightarrow\left(x-2\right)\left(x-3\right)>0\)
Chia 2 trường hợp:
+) T/h 1:
\(\left\{{}\begin{matrix}x-2>0\\x-3>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>2\\x>3\end{matrix}\right.\Leftrightarrow x>3\)
+) T/h 2:
\(\left\{{}\begin{matrix}x-2< 0\\x-3< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 2\\x< 3\end{matrix}\right.\Leftrightarrow x< 2\)
Vậy .................
1, Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=-5\\x_1x_2=-6\end{matrix}\right.\)
\(A=\left(x_1-2x_2\right)\left(2x_1-x_2\right)\\ =2x_1^2-4x_1x_2-x_1x_2+2x_1^2\\ =2\left(x_1^2+x_2^2\right)-5x_1x_2\\ =2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]-5x_1x_2\\ =2\left(-5\right)^2-4.\left(-6\right)-5.\left(-6\right)\\ =104\)
2, Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=-3\end{matrix}\right.\)
\(B=x_1^3x_2+x_1x_2^3\\ =x_1x_2\left(x_1^2+x_2^2\right)\\ =\left(-3\right)\left[\left(x_1+x_2\right)^2-2x_1x_2\right]\\ =\left(-3\right)\left[5^2-2\left(-3\right)\right]\\ =-93\)
\(\frac{x^2+x-6}{x-4}>0\) <=> \(\frac{\left(x^2-4\right)+\left(x-2\right)}{x-4}>0\) <=> \(\frac{\left(x-2\right)\left(x+2\right)+\left(x-2\right)}{x-4}>0\)
<=> \(\frac{\left(x-2\right)\left(x+3\right)}{x-4}>0\). Có các TH:
+/ TH1: \(\hept{\begin{cases}\left(x-2\right)\left(x+3\right)>0\\x-4>0\end{cases}}< =>\orbr{\begin{cases}x< -3\\x>4\end{cases}}\)(1)
+/ TH2: \(\hept{\begin{cases}\left(x-2\right)\left(x+3\right)< 0\\x-4< 0\end{cases}}< =>-3< x< 2\) (2)
Từ (1) và (2) => Nghiệm của PT là: x<2; x khác 3 và x>4
Để \(\frac{x^2+x-6}{x-4}>0\)thì
\(x^2+x-6>0\)và \(x-4>0\)Với điều kiện \(x\ne4\)
Thứ 1
Để \(x^2+x-6>0\)
Thì \(x^2+x>6\)
Mà \(x^2\ge0\)và \(x^2>x\)
Suy ra \(x^2+x\ge0\)
Suy ra \(x>2\)và \(x\ge-2\)
Thứ 2
\(x-4>0\)
Suy ra \(x>4\)
Vậy x phải thỏa mãn điều kiện sau
\(x\ge-2\)