K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2017

\(\dfrac{2x}{5}+\dfrac{3-2x}{3}\ge\dfrac{3x+2}{2}\)

\(\Leftrightarrow12x+10\left(3-2x\right)\ge15\left(3x+2\right)\)

\(\Leftrightarrow12x+30-20x-45x-30\ge0\)

\(\Leftrightarrow-53x\ge0\Leftrightarrow x\le0\)

27 tháng 2 2018

(1) + rút y từ pt (2) thay vào pt (1), ta được pt bậc hai 1 ẩn x, dễ rồi, tìm x rồi suy ra y

(2) + (3)

+ pt nào có nhân tử chung thì đặt nhân tử chung (thật ra chỉ có pt (2) của câu 2 là có nhân từ chung)

+ trong hệ, thấy biểu thức nào giống nhau thì đặt cho nó 1 ẩn phụ

VD hệ phương trình 3: đặt a= x+y ; b= căn (x+1)

+ khi đó ta nhận được một hệ phương trình bậc nhất hai ẩn, giải hpt đó rồi suy ra x và y

24 tháng 2 2019

cậu cần nữa k????

a: \(\Leftrightarrow\dfrac{2x-3}{x-1}=4\)

=>4x-4=2x-3

=>2x=1

hay x=1/2

b: \(\Leftrightarrow\sqrt{\dfrac{2x-3}{x-1}}=2\)

=>(2x-3)=4x-4

=>4x-4=2x-3

=>2x=1

hay x=1/2(nhận)

c: \(\Leftrightarrow\sqrt{2x+3}\left(\sqrt{2x-3}-2\right)=0\)

=>2x+3=0 hoặc 2x-3=4

=>x=-3/2 hoặc x=7/2

e: \(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

=>căn (x-5)=2

=>x-5=4

hay x=9

27 tháng 6 2017

1) Đk: x khác -3

x khác 1

Biểu thức \(\Leftrightarrow\dfrac{x^2-x}{x^2+2x-3}+\dfrac{2x+6}{x^2+2x-3}=\dfrac{12}{x^2+2x-3}\)

\(\Leftrightarrow x^2-x+2x+6=12\Leftrightarrow x^2+x-6=0\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)

kl: x thuộc {-3;2}

27 tháng 6 2017

@Nguyễn Thị Giang Thanh

15 tháng 6 2018

a) \(\left(x^2-4\right)-\left(x-2\right)\left(3-2x\right)\)

\(=\left(x-2\right)\left(x+2\right)-\left(x-2\right)\left(3-2x\right)\)

\(=\left(x-2\right)\left(x+2-3+2x\right)\)

\(=\left(x-2\right)\left(3x-1\right)\)

b) ĐKXĐ: x ≠ 5; x ≠ -5

Với điều kiện trên ta có:

\(\dfrac{x+5}{x^2-5x}-\dfrac{x-5}{2x^2+10x}=\dfrac{x+25}{2x^2-50}\)

\(\Leftrightarrow\dfrac{x+5}{x\left(x-5\right)}-\dfrac{x-5}{2x\left(x+5\right)}-\dfrac{x+25}{2\left(x^2-25\right)}=0\)

\(\Leftrightarrow\dfrac{x+5}{x\left(x-5\right)}-\dfrac{x-5}{2x\left(x+5\right)}-\dfrac{x+25}{2\left(x-5\right)\left(x+5\right)}=0\)

\(\Rightarrow2\left(x+5\right)^2-\left(x-5\right)^2-x\left(x+25\right)=0\)

\(\Leftrightarrow2x^2+20x+50-x^2+10x-25-x^2-25x=0\)

\(\Leftrightarrow5x-25=0\)

\(\Leftrightarrow5x=25\)

\(\Leftrightarrow x=5\)(Không thỏa mãn ĐKXĐ)

Vậy tập nghiệm của phương trình là S = ∅

c) ĐKXĐ: x ≠ 1

Với điều kiện trên ta có:

\(\dfrac{1}{x-1}-\dfrac{3x^2}{x^3-1}=\dfrac{2x}{x^2+x+1}\)

\(\Leftrightarrow\dfrac{1}{x-1}-\dfrac{3x^2}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{2x}{x^2+x+1}=0\)

\(\Rightarrow x^2+x+1-3x^2-2x\left(x-1\right)=0\)

\(\Leftrightarrow x^2+x+1-3x^2-2x^2+2x=0\)

\(\Leftrightarrow-4x^2+3x+1=0\)

\(\Leftrightarrow-4x^2+4x-x+1=0\)

\(\Leftrightarrow-4x\left(x-1\right)-\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(-4x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\-4x-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(Khôngthoảman\right)\\x=-\dfrac{1}{4}\left(Thỏamãn\right)\end{matrix}\right.\)

Vậy tập nghiệm của phương trình là \(S=\left\{-\dfrac{1}{4}\right\}\)

NV
1 tháng 12 2018

ĐKXĐ: \(x\ne1;x\ne\dfrac{1}{3}\)

\(\dfrac{2x}{3x^2-x+1}-\dfrac{1}{2}+\dfrac{x}{3x^2-4x+1}-1=0\)

\(\Leftrightarrow\dfrac{-3x^2+5x-1}{6x^2-2x-2}+\dfrac{-3x^2+5x-1}{3x^2-4x+1}=0\)

\(\Leftrightarrow\left(-3x^2+5x-1\right)\left(\dfrac{1}{6x^2-2x-2}+\dfrac{1}{3x^2-4x+1}\right)=0\)

TH1: \(-3x^2+5x-1=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{5-\sqrt{13}}{6}\\x=\dfrac{5+\sqrt{13}}{6}\end{matrix}\right.\)

TH2: \(\dfrac{1}{6x^2-2x-2}+\dfrac{1}{3x^2-4x+1}=0\Leftrightarrow\dfrac{9x^2-6x-1}{\left(6x^2-2x-2\right)\left(3x^2-4x+1\right)}=0\)

\(\Leftrightarrow9x^2-6x-1=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{1-\sqrt{2}}{3}\\x=\dfrac{1+\sqrt{2}}{3}\end{matrix}\right.\)

Vậy pt đã cho có 4 nghiệm x=....

21 tháng 11 2022

Bài 1:

Đặt 2x+1=a

Theo đề, ta có: \(\dfrac{1}{a^2}+\dfrac{1}{\left(a+1\right)^2}=3\)

=>3a^2(a+1)^2=a^2+2a+1+a^2

=>3a^2(a^2+2a+1)-2a^2-2a-1=0

=>3a^4+6a^3+a^2-2a-1=0

=>(a^2+a-1)(3a^2+3a+1)=0

=>\(a\in\left\{\dfrac{-1+\sqrt{5}}{2};\dfrac{-1-\sqrt{5}}{2}\right\}\)

=>\(2x+1\in\left\{\dfrac{-1+\sqrt{5}}{2};\dfrac{-1-\sqrt{5}}{2}\right\}\)

=>\(2x\in\left\{\dfrac{-3+\sqrt{5}}{2};\dfrac{-3-\sqrt{5}}{2}\right\}\)

hay \(x\in\left\{\dfrac{-3+\sqrt{5}}{4};\dfrac{-3-\sqrt{5}}{4}\right\}\)