\(\sqrt{4-x^2}+x^2>4\)

giúp với :v mn

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2020

\(ĐK:2\le x\le4\)

\(\sqrt{x-2}+\sqrt{4-x}=2x^2-5x-1\Leftrightarrow\left(\sqrt{x-2}-1\right)+\left(\sqrt{4-x}-1\right)=2x^2-5x-3\)\(\Leftrightarrow\frac{x-3}{\sqrt{x-2}+1}+\frac{3-x}{\sqrt{4-x}+1}=\left(x-3\right)\left(2x+1\right)\)\(\Leftrightarrow\left(x-3\right)\left(\frac{1}{\sqrt{x-2}+1}-\frac{1}{\sqrt{4-x}+1}-2x-1\right)=0\)

Suy ra x - 3 = 0 nên x = 3

Vậy phương trình có 1 nghiệm duy nhất là 3

10 tháng 8 2017

\(\sqrt{x^2+4}=x+2\)

\(x+2=\left(x+2\right)^2\)

\(x+2=x^2+4x+4\)

\(x^2+3x+2=0\)

\(x^2+x+2x+2=0\)

\(x\left(x+1\right)+2\left(x+1\right)=0\Rightarrow\left(x+1\right)\left(x+2\right)=0\)

  • (x+1)=0=>x=-1
  • (x+2)=0=>x=-2

Tại năm nay mk cũng lên lớp 9 nên cx k bt đúng hay sai nữa.Nếu đúng thì k cho mk nhé ^_^

18 tháng 8 2017

của bn đúng rùi đó .mk giải dc hết rùi

20 tháng 10 2020

a) \(\sqrt{9x}-5\sqrt{x}=6-4\sqrt{x}\)  (đk: \(x\ge0\))

\(\Leftrightarrow3\sqrt{x}-5\sqrt{x}=6-4\sqrt{x}\)

\(\Leftrightarrow-2\sqrt{x}+4\sqrt{x}=6\)

\(\Leftrightarrow2\sqrt{x}=6\)

\(\Leftrightarrow\sqrt{x}=3\)

\(\Leftrightarrow\sqrt{x}=\sqrt{9}\)

\(\Leftrightarrow x=9\)(tmđk)

vậy nghiệm của phtrinh là x = 9

20 tháng 10 2020

b) \(\sqrt{x^2-6x+9}=6\)     (đk: \(x^2-6x+9\ge0\))

bình phương 2 vế, ta được: \(x^2-6x+9=36\)

\(\Leftrightarrow x^2-6x-27=0\)

\(\Leftrightarrow\left(x-9\right)\left(x+3\right)=0\)

\(\Leftrightarrow x=9\)hoặc \(x=-3\)

16 tháng 10 2015

Vậy S={x|1/3<x bé hơn hoặc =3}

10 tháng 12 2019

\(4\left(x+1\right)^2=\sqrt{2\left(x^4+x^2+1\right)}\)

\(\Leftrightarrow16\left(x+1\right)^4=2\left(x^4+x^2+1\right)\)

\(\Leftrightarrow\left(x^2+3x+1\right)\left(7x^2+11x+7\right)=0\)

10 tháng 12 2019

\(\sqrt{\frac{x+56}{16}+\sqrt{x-8}}=\frac{x}{8}\)

\(\Leftrightarrow2\sqrt{x+56+16\sqrt{x-8}}=x\)

\(\Leftrightarrow2\sqrt{\left(\sqrt{x-8}+8\right)^2}=x\)

\(\Leftrightarrow2\sqrt{x-8}+16=x\)

\(\Leftrightarrow x=24\)

4 tháng 7 2020

1.a) \(\sqrt{x^2-4}-\sqrt{x-2}=0\)

\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x+2\right)}-\sqrt{x-2}=0\)

\(\Leftrightarrow\sqrt{x-2}.\sqrt{x+2}-\sqrt{x-2}=0\)

\(\Leftrightarrow\sqrt{x-2}.\left(\sqrt{x+2}-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-2}=0\\\sqrt{x+2}-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\\sqrt{x+2}=1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x+2=1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)

Vậy x=2 hoặc x=-1

17 tháng 10 2016

1/ Điều kiện xác định

\(\hept{\begin{cases}2IxI-1\ge0\\x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0,5orx\le-0,5\\x\le0\end{cases}}\Leftrightarrow x\le-0,5}\)

Bình phương 2 vế ta được

\(x^2=2IxI-1\)

\(\Leftrightarrow\orbr{\begin{cases}2x=x^2+1\\2x=-x^2-1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\left(loai\right)\\x=-1\end{cases}}}\)

Vậy nghiệm pt là x = -1

2/ \(A=5x+\frac{180}{x-1}=5\left(x-1\right)+\frac{180}{x-1}+5\)

\(\ge2\sqrt{5\times180}+5=65\)

Đạt được khi x = 7

3/ \(\hept{\begin{cases}x\ge0\\-\sqrt{x}>-9\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ge0\\\sqrt{x}< 9\end{cases}\Leftrightarrow0\le x< 81}\)

Có vô số giá trị thực x thỏa mãn cái đó

4/ \(\sqrt{x^2-2x+1}-\sqrt{x^2-4x+4}=x-3\)

\(\Leftrightarrow\sqrt{\left(x-1\right)^2}-\sqrt{\left(x-2\right)^2}=x-3\)

\(\Leftrightarrow Ix-1I-Ix-2I=x-3\)

Tới đây thì đơn giản rồi b tự làm nốt nhé

17 tháng 10 2016

1 / 

đây thuộc phương trình , phần mình rất yếu 

IxI không phải là giá trị tuyệt đối của x đâu

2 /

giá trị nhỏ nhất của x = 2

nếu vậy , A = 10 + 180 = 190

nhưng đây là kết quả quá lớn , ta phải tiếp tục cho x lớn hơn nữa để có kết quả nhỏ hơn

3 /  ; 4 /

chịu