\(\frac{x+2}{\sqrt{2\left(x^4-x^2+1\right)-1}}\ge\frac{1}{x-1}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2016

\(S=\frac{-1+\sqrt{2}}{2-1}+\frac{-\sqrt{2}+\sqrt{3}}{3-2}+...+\frac{-\sqrt{99}+\sqrt{100}}{100-99}\)

\(=-1+\sqrt{2}-\sqrt{2}+\sqrt{3}-....-\sqrt{99}+\sqrt{100}\)

\(=-1+\sqrt{100}\)

\(\hept{\begin{cases}a=\left(x^2-x+1\right)^2\\b=x^2\end{cases}}\)

\(a^2-\left(b+1\right)a+b=0\Leftrightarrow\left(a-1\right)\left(a-b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=1\\a=b\end{cases}\Leftrightarrow}\orbr{\begin{cases}\left(x^2-x+1\right)^2=1\\\left(x^2-x+1\right)^2=x^2\end{cases}}\)(easy)

11 tháng 6 2017

xem lại đề câu 1đi nhé 

11 tháng 6 2017

b)\(\frac{1}{x+\sqrt{x^2+x}}+\frac{1}{x-\sqrt{x^2+x}}=x\)

\(\Leftrightarrow\frac{x-\sqrt{x^2+x}}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}+\frac{x+\sqrt{x^2+x}}{\left(x-\sqrt{x^2+x}\right)\left(x+\sqrt{x^2+x}\right)}-\frac{x\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}=0\)

\(\Leftrightarrow\frac{x-\sqrt{x^2+x}+x+\sqrt{x^2+x}-x^2}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}=0\)

\(\Leftrightarrow\frac{-x^2+2x}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}=0\)

\(\Leftrightarrow\frac{-x\left(x+2\right)}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}=0\)

Dễ thấy: x=0 ko là nghiệm nên \(x+2=0\Rightarrow x=-2\)

c)\(\sqrt{2x+4}-2\sqrt{2-x}=\frac{12x-8}{\sqrt{9x^2+16}}\)

\(\Leftrightarrow\frac{\left(2x+4\right)-4\left(2-x\right)}{\sqrt{2x+4}+2\sqrt{2-x}}=\frac{4\left(3x-2\right)}{\sqrt{9x^2+16}}\)

\(\Leftrightarrow\frac{2\left(3x-2\right)}{\sqrt{2x+4}+2\sqrt{2-x}}=\frac{4\left(3x-2\right)}{\sqrt{9x^2+16}}\)

\(\Leftrightarrow\frac{2\left(3x-2\right)}{\sqrt{2x+4}+2\sqrt{2-x}}-\frac{4\left(3x-2\right)}{\sqrt{9x^2+16}}=0\)

\(\Leftrightarrow\left(3x-2\right)\left(\frac{2}{\sqrt{2x+4}+2\sqrt{2-x}}-\frac{4}{\sqrt{9x^2+16}}\right)=0\)

\(\Leftrightarrow x=\frac{2}{3}\)

13 tháng 7 2017

\(Xét-mẫu-của-biểu-thức:\left(đk:x\ge1\right).ta-có:x-\sqrt{2\left(x^2+5\right)}=\frac{-\left(x^2+10\right)}{x+\sqrt{2\left(x^2+5\right)}}< 0\\ .\)Vậy nó luôn <0 với đk x>=1
\(Xét-tử:đặt-nó-bằng-A=\left(x-2\right)^2-\left(\sqrt{x-1}-1\right)^2\left(2x-1\right)=2\sqrt{x-1}\left(2x-1\right)-\left(x-1\right)\left(x+4\right)\\ =\sqrt{x-1}\left(2\left(2x-1\right)-\sqrt{x-1\left(x+4\right)}\right)\ge0.\\ \)\(=>\left(2\left(2x-1\right)-\sqrt{\left(x-1\right)}\left(x+4\right)\right)\ge0< =>\frac{\left(5-x\right)\left(x-2\right)^2}{2\left(2x-1\right)+\left(x-1\right)\left(x+4\right)}\ge0< =>x\le5\) Vậy . \(1\le x\le5\)
 

15 tháng 7 2017

Thank you ^^^

18 tháng 5 2017

Câu 1/

\(\hept{\begin{cases}\frac{x^2}{\left(y+1\right)^2}+\frac{y^2}{\left(x+1\right)^2}=\frac{1}{2}\left(1\right)\\3xy-x-y=1\left(2\right)\end{cases}}\)

Xét PT (2) ta có:

\(\left(2\right)\Leftrightarrow3xy-y=1+x\)

\(\Leftrightarrow y=\frac{1+x}{3x-1}\)

\(\Leftrightarrow y+1=\frac{4x}{3x-1}\)

\(\Leftrightarrow\frac{x}{y+1}=\frac{3x-1}{4}\left(3\right)\)

Ta lại có:

\(y=\frac{1+x}{3x-1}\)

\(\Leftrightarrow\frac{y}{x+1}=\frac{1}{3x-1}\left(4\right)\)

Từ PT (1) ta có

\(\left(1\right)\Leftrightarrow\left(\frac{3x-1}{4}\right)^2+\left(\frac{1}{3x-1}\right)^2=\frac{1}{2}\)

\(\Leftrightarrow9x^4-12x^3-2x^2+4x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(3x+1\right)^2=0\)

Làm tiếp nhé

18 tháng 5 2017

Câu 2/

a/ \(x^2-1=3\sqrt{3x+1}\)

\(\Leftrightarrow\left(x^2-1\right)^2=\left(3\sqrt{3x+1}\right)^2\)

\(\Leftrightarrow x^4-2x^2-27x-8=0\)

\(\Leftrightarrow\left(x^2-3x-1\right)\left(x^2+3x+8\right)=0\)

Tới đây thì đơn giản rồi nhé

b/ \(\sqrt{2-x}+\sqrt{2+x}+\sqrt{4-x^2}=2\)

Đặt \(\hept{\begin{cases}\sqrt{2-x}=a\\\sqrt{2+x}=b\end{cases}\left(a,b\ge0\right)}\)

Thì ta có:

\(\hept{\begin{cases}a^2+b^2=4\\a+b+ab=2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(a+b\right)^2-2ab=4\\\left(a+b\right)+ab=2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a+b=2\\ab=0\end{cases}}\) hoặc \(\hept{\begin{cases}a+b=-4\\ab=6\end{cases}\left(l\right)}\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{2-x}+\sqrt{2+x}=2\\\sqrt{4-x^2}=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)

PS: Điều kiện xác định bạn tự làm nhé

20 tháng 8 2019

chịu thua