K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
NA
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
HM
0
TXĐ: \(D=\left[-\frac{1}{2};\frac{1}{2}\right]\backslash\left\{0\right\}\)
Trường hợp 1: \(x\in[-\frac{1}{2};0)\)
BPT tương đương: \(\hept{\begin{cases}-\frac{1}{2}\le x< 0\\1-\sqrt{1-4x^2}>3x\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-\frac{1}{2}\le x< 0\\\sqrt{1-4x^2}< 1-3x\end{cases}}\Leftrightarrow\hept{\begin{cases}-\frac{1}{2}\le x< 0\\x< \frac{1}{3}\\1-4x^2< 1-6x+9x^2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-\frac{1}{2}\le x< 0\\x< \frac{1}{3}\\x< 0\left(h\right)x>\frac{6}{13}\end{cases}}\Leftrightarrow-\frac{1}{2}\le x< 0\)
Trường hợp 2: \(x\in(0;\frac{1}{2}]\)
BPT tương đương: \(\hept{\begin{cases}0< x\le\frac{1}{2}\\1-\sqrt{1-4x^2}< 3x\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}0< x\le\frac{1}{2}\\1-3x\ge0\\13x^2-6x< 0\end{cases}}\left(h\right)\hept{\begin{cases}0< x\le\frac{1}{2}\\1-3x< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}0< x\le\frac{1}{2}\\x\le\frac{1}{3}\\0< x< \frac{6}{13}\end{cases}}\left(h\right)\hept{\begin{cases}0< x\le\frac{1}{2}\\x>\frac{1}{3}\end{cases}}\)
\(\Leftrightarrow0< x\le\frac{1}{3}\left(h\right)\frac{1}{3}< x\le\frac{1}{2}\Leftrightarrow0< x\le\frac{1}{2}\)
Vậy \(S=\left[-\frac{1}{2};\frac{1}{2}\right]\backslash\left\{0\right\}\)