Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{\left(x^3-4x^2+5x-20\right)}{x^3-x^2-10x-8}>0\\ \Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^3-4x^2+5x-20>0\\x^3-x^2-10x-8>0\end{matrix}\right.\\\left\{{}\begin{matrix}x^3-4x^2+5x-20< 0\\x^3-x^2-10x-8< 0\end{matrix}\right.\end{matrix}\right.\Rightarrow bấm\:máy\: là\: ra\)
Cậu vô link này có hướng dẫn chi tiết https://hoc24.vn/hoi-dap/question/796601.html
a: \(\Leftrightarrow2x\left(x^2+2x+5\right)=0\)
=>x=0
b: \(\Leftrightarrow\dfrac{x}{x-1}-\dfrac{x+1}{x-3}=\dfrac{1}{2}\)
\(\Leftrightarrow x^2-4x+3=2x\left(x-3\right)-2\left(x^2-1\right)\)
\(\Leftrightarrow x^2-4x+3=2x^2-6x-2x^2+2=-6x+2\)
\(\Leftrightarrow x^2+2x+1=0\)
=>x=-1(nhận)
\(a,2x^3+4x^2+10x=0\\ \Leftrightarrow2x\left(x^2+2x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x=0\\x^2+2x+5=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\\left(x^2+2x+1\right)+4=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\\left(x+1\right)^2+4=0\left(vô..lí\right)\end{matrix}\right.\)
\(b,ĐKXĐ:\left\{{}\begin{matrix}x\ne1\\x\ne3\\x\ne4\end{matrix}\right.\\ \dfrac{x^2-4x}{x^2-5x+4}-\dfrac{1}{2}=\dfrac{x+1}{x-3}\\ \Leftrightarrow\dfrac{x\left(x-4\right)}{\left(x-1\right)\left(x-4\right)}-\dfrac{1}{2}=\dfrac{x+1}{x-3}\\ \Leftrightarrow\dfrac{x}{x-1}-\dfrac{1}{2}-\dfrac{x+1}{x-3}=0\\ \Leftrightarrow\dfrac{2x\left(x-3\right)}{2\left(x-1\right)\left(x-3\right)}-\dfrac{\left(x-1\right)\left(x-3\right)}{2\left(x-1\right)\left(x-3\right)}-\dfrac{2\left(x+1\right)\left(x-1\right)}{2\left(x-1\right)\left(x-3\right)}=0\)
\(\Leftrightarrow\dfrac{2x^2-6x}{2\left(x-1\right)\left(x-3\right)}-\dfrac{x^2-4x+3}{2\left(x-1\right)\left(x-3\right)}-\dfrac{2x^2-2}{\left(x-1\right)\left(x-3\right)}=0\)
\(\Leftrightarrow\dfrac{2x^2-6x-x^2+4x-3-2x^2+2}{2\left(x-1\right)\left(x-3\right)}=0\)
\(\Rightarrow-x^2-2x-1=0\)
\(\Leftrightarrow x^2+2x+1=0\\ \Leftrightarrow\left(x+1\right)^2=0\\ \Leftrightarrow x+1=0\\ \Leftrightarrow x=-1\left(tm\right)\)
Bài 4 :
24 phút = \(\dfrac{24}{60} = \dfrac{2}{5}\) giờ
Gọi thời gian dự định đi từ A đến B là x(giờ) ; x > 0
Suy ra quãng đường AB là 36x(km)
Khi vận tốc sau khi giảm là 36 -6 = 30(km/h)
Vì giảm vận tốc nên thời gian đi hết AB là x + \(\dfrac{2}{5}\)(giờ)
Ta có phương trình:
\(36x = 30(x + \dfrac{2}{5})\\ \Leftrightarrow x = 2\)
Vậy quãng đường AB dài 36.2 = 72(km)
a) Ta có: \(2\left(3x+1\right)-4\left(5-2x\right)>2\left(4x-3\right)-6\)
\(\Leftrightarrow6x+2-20+8x>8x-6-6\)
\(\Leftrightarrow14x-18-8x+12>0\)
\(\Leftrightarrow6x-6>0\)
\(\Leftrightarrow6x>6\)
hay x>1
Vậy: S={x|x>1}
b) Ta có: \(9x^2-3\left(10x-1\right)< \left(3x-5\right)^2-21\)
\(\Leftrightarrow9x^2-30x+3< 9x^2-30x+25-21\)
\(\Leftrightarrow9x^2-30x+3-9x^2+30x-4< 0\)
\(\Leftrightarrow-1< 0\)(luôn đúng)
Vậy: S={x|\(x\in R\)}
`d,(10x+3)/12=1+(6+8x)/9`
`<=>(10x+3)/12=(8x+15)/9`
`<=>30x+9=32x+60`
`<=>2x=-51`
`<=>x=-51/2`
a) \(\left(x^2+x+1\right)\left(x^2+x+2\right)=12\)
\(\Leftrightarrow\left(x^2+x+1\right)^2+\left(x^2+x+1\right)-12=0\)
\(\Leftrightarrow\left(x^2+x+1\right)^2-3\left(x^2+x+1\right)+4\left(x^2+x+1\right)-12=0\)
\(\Leftrightarrow\left(x^2+x+1\right)\left(x^2+x+1-3\right)+ 4\left(x^2+x+1-3\right)=0\)
\(\Leftrightarrow\left(x^2+x-2\right)\left(x^2+x+5\right)=0\)
\(\Leftrightarrow x^2+x+4=0\) hay \(x^2+x-2=0\)
\(\Leftrightarrow x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{15}{4}=0\) hay \(x^2-x+2x-2=0\)
\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{15}{4}=0\) (pt vô nghiệm) hay\(x\left(x-1\right)+2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow x=1\) hay \(x=-2\)
-Vậy \(S=\left\{1;-2\right\}\)
b) \(x^3+5x^2-10x-8=0\)
\(\Leftrightarrow x^3-2x^2+7x^2-14x+4x-8=0\)
\(\Leftrightarrow x^2\left(x-2\right)+7x\left(x-2\right)+4\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+7x+4\right)=0\)
\(\Leftrightarrow x=2\) hay \(x^2+2.\dfrac{7}{2}+\dfrac{49}{4}-\dfrac{33}{4}=0\)
\(\Leftrightarrow x=2\) hay \(\left(x+\dfrac{7}{2}\right)^2-\dfrac{33}{4}=0\)
\(\Leftrightarrow x=2\) hay \(\left(x+\dfrac{7}{2}+\dfrac{\sqrt{33}}{2}\right)\left(x+\dfrac{7}{2}-\dfrac{\sqrt{33}}{2}\right)=0\)
\(\Leftrightarrow x=2\) hay \(x=\dfrac{-7-\sqrt{33}}{2}\) hay \(x=\dfrac{-7+\sqrt{33}}{2}\)
-Vậy \(S=\left\{2;\dfrac{-7-\sqrt{33}}{2};\dfrac{-7+\sqrt{33}}{2}\right\}\)
BPT <=> -3x2+15x-12>0
<=> x2-5x+4<0
<=> (x-1)(x-4)<0
<=> \(\hept{\begin{cases}x-1>0\\x-4< 0\end{cases}}\)hoặc \(\hept{\begin{cases}x-1< 0\\x-4>0\end{cases}}\)(loại)
<=> 1<x<4