K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\frac{x-3}{x-2}>2\)

\(\Rightarrow\frac{x-3}{x-2}-2>0\)

\(\Rightarrow\frac{x-3-2x+4}{x-2}>0\)

\(\Rightarrow\frac{1-x}{x-2}>0\)

Trường hợp 1 :\(\hept{\begin{cases}1-x>0\\x-2>0\end{cases}\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}\left(vl\right)}}\)

Trường hợp 2 : \(\hept{\begin{cases}1-x< 0\\x-2< 0\end{cases}\Rightarrow\hept{\begin{cases}x>1\\x< 2\end{cases}\left(tm\right)}}\)

Vậy \(1< x< 2\)

\(\hept{\begin{cases}1-x>0\\x-2 >0\end{cases}\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}\left(VL\right)}}\)

x + 2 bạn ơi không phải x - 2 ở mẫu !

1 tháng 5 2016

(x-1)/(x-3)>(x-3)/(x-3)  

x-1>x-3 

x-x> -3 +1 

0X >-2      (phuong trinh vo nghiem )

20 tháng 4 2019

1a

x^2-8x<0

<=> x(x-8)<0

th1: x<0 và x-8>0

 x<0 và x>8

<=> 8<x<0 ( vô lý)

th2: x>0 và x-8<0

<=> x>0 và x<8

<=> 0<x<8( tm)

vậy........

20 tháng 4 2019

a) \(x^2-8x< 0\)

\(\Leftrightarrow x\left(x-8\right)< 0\)

\(\Leftrightarrow\hept{\begin{cases}x>0\\x-8< 0\end{cases}}\) hoặc \(\hept{\begin{cases}x< 0\\x-8>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x>0\\x< 8\end{cases}}\)         hoặc   \(\hept{\begin{cases}x< 0\\x>8\end{cases}}\) (loại)

\(\Leftrightarrow0< x< 8\)

b) \(x^2< 6x-5\)

\(\Leftrightarrow x^2-6x+5< 0\)

\(\Leftrightarrow x^2-x-5x+5< 0\)

\(\Leftrightarrow x\left(x-1\right)-5\left(x-1\right)< 0\)

\(\Leftrightarrow\left(x-1\right)\left(x-5\right)< 0\)

\(\Leftrightarrow\hept{\begin{cases}x-1>0\\x-5< 0\end{cases}}\) hoặc \(\hept{\begin{cases}x-1< 0\\x-5>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x>1\\x< 5\end{cases}}\)          hoặc  \(\hept{\begin{cases}x< 1\\x>5\end{cases}}\) (loại)

\(\Leftrightarrow1< x< 5\)

c) \(\frac{x-3}{x-2}< 0\)

\(\Leftrightarrow\hept{\begin{cases}x-3>0\\x-2< 0\end{cases}}\) hoặc \(\hept{\begin{cases}x-3< 0\\x-2>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x>3\\x< 2\end{cases}}\)  (loại)  hoặc  \(\hept{\begin{cases}x< 3\\x>2\end{cases}}\)

\(\Leftrightarrow2< x< 3\)

d) \(\frac{x+1}{x-3}>2\) (ĐK: \(x\ne3\) )

\(\Leftrightarrow\frac{x+1}{x-3}-2>0\)

\(\Leftrightarrow\frac{x+1-2\left(x-3\right)}{x-3}>0\)

\(\Leftrightarrow\frac{-x+7}{x-3}>0\)

\(\Leftrightarrow\hept{\begin{cases}-x+7>0\\x-3>0\end{cases}}\) hoặc \(\hept{\begin{cases}-x+7< 0\\x-3< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-x>-7\\x>3\end{cases}}\)     hoặc  \(\hept{\begin{cases}-x< -7\\x< 3\end{cases}}\)  

\(\Leftrightarrow\hept{\begin{cases}x< 7\\x>3\end{cases}}\)              hoặc   \(\hept{\begin{cases}x>7\\x< 3\end{cases}}\) (loại)

\(\Leftrightarrow3< x< 7\)

17 tháng 3 2019

\(BPT\Leftrightarrow x-3>2x+4\)

\(\Leftrightarrow-x-7>0\)

\(\Leftrightarrow-\left(x+7\right)>0\)

\(\Leftrightarrow x+7< 0\)

\(\Leftrightarrow x< -7\)

8 tháng 5 2019

a) \(3-2x>4\)

\(\Leftrightarrow-2x>1\)

\(\Leftrightarrow x< \frac{-1}{2}\)

b) \(\frac{2}{3-x}-\frac{9}{3+x}=\frac{1}{2}\)ĐKXĐ : \(x\pm3\)

\(\Leftrightarrow\frac{-4\left(x+3\right)}{2\left(x-3\right)\left(x+3\right)}-\frac{18\left(x-3\right)}{2\left(x-3\right)\left(x+3\right)}=\frac{\left(x-3\right)\left(x+3\right)}{2\left(x-3\right)\left(x+3\right)}\)

\(\Rightarrow-4x-13-18x+54=x^2-9\)

\(\Leftrightarrow x^2+22x-50=0\)

\(\Leftrightarrow x^2+2\cdot x\cdot11+11^2-171=0\)

\(\Leftrightarrow\left(x+11\right)^2=\left(\pm\sqrt{171}\right)^2\)

\(\Leftrightarrow\orbr{\begin{cases}x=\sqrt{171}-11\\x=-\sqrt{171}-11\end{cases}}\)( thỏa )

Vậy....

8 tháng 5 2019

\(a,\)\(3-2x>4\)

\(\Rightarrow-2x>1\)

\(\Rightarrow x< \frac{-1}{2}\)

10 tháng 5 2019

a)   3-4x\(\ge\)11

  \(4x\le3-11=-8\)

\(x\le-2\)

( câu b bn ghi rõ đề bài đc ko ?)

10 tháng 1 2019

\(\left|x-1\right|>\left|x+2\right|-3\)(1)

Nếu x < -2 thì (1) trở thành:

\(1-x>-x-2-3\Leftrightarrow1-x>-x-5\Leftrightarrow1+5>-x+x\Leftrightarrow6>0\)(luôn đúng)

Nếu \(-2\le x< 1\) thì (1) trở thành: 

\(1-x>x+2-3\Leftrightarrow1-x>x-1\Leftrightarrow1+1>x+x\Leftrightarrow2>2x\Leftrightarrow x< 1\)

Nếu \(x\ge1\) thì (1) trở thành: 

\(x-1>x+2-3\Leftrightarrow x-1>x-1\) (vô lý)

Vậy tập nghiệm của pt là \(S=\left\{x/x< -2\right\}\)