Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện : \(x\ge1\)
\(3\left(x^2-2\right)+\frac{4\sqrt{2}}{\sqrt{x^2-x+1}}>\sqrt{x}\left(\sqrt{x-1}+3\sqrt{x^2-1}\right)\) \(\Leftrightarrow6\left(x^2-2\right)+\frac{8\sqrt{2}}{\sqrt{x^2-x+1}}-2\sqrt{x^2-x}-6\sqrt{x}\sqrt{x^2-1}>0\)
\(\Leftrightarrow3\left(\sqrt{x^2-1}-\sqrt{x}\right)^2+\left(\sqrt{x^2-x}-1\right)^2+2\left(\frac{4\sqrt{2}}{\sqrt{x^2-x}+1}+x^2-x-5\right)>0\)
Xét hàm số \(f\left(t\right)=\frac{4\sqrt{2}}{\sqrt{t+1}}+t-5,\left(t\ge0\right)\)
Ta có \(f'\left(t\right)=1-\frac{2\sqrt{2}}{\left(t+1\right)\sqrt{t+1}}\)
\(f'\left(t\right)=0\Leftrightarrow t=1\)
Bảng xét dấu :
x | 0 1 +\(\infty\) |
f'(x) | / - 0 + |
Suy ra \(f\left(t\right)\ge f\left(1\right)\), với mọi \(t\in\left[0;+\infty\right]\)\(\Rightarrow\) \(f\left(t\right)\ge0\), với mọi \(t\in\left[0;+\infty\right]\). Dấu = xảy ra \(\Leftrightarrow t=1\)
Do \(x^2-x\ge0\) với mọi \(x\in\left[0;+\infty\right]\)\(\Rightarrow\frac{4\sqrt{2}}{\sqrt{x^2-x+1}}+x^2-x-5\ge0\) với mọi \(x\in\left[0;+\infty\right]\), dấu = xảy ra khi \(x^2-x=1\Leftrightarrow x=\frac{1+\sqrt{5}}{2}\)
Khi đó \(3\left(\sqrt{x^2-1}-\sqrt{x}\right)^2+\left(\sqrt{x^2-1}-1\right)^2+2\left(\frac{4\sqrt{2}}{\sqrt{x^2-1}+1}+x^2-x-5\right)>0\)
\(\Leftrightarrow\begin{cases}\sqrt{x^2-1}-\sqrt{x}\ne0\\\sqrt{x^2-x}-1\ne0\\\frac{4\sqrt{2}}{\sqrt{x^2-x+1}}+x^2-x-5\ne0\end{cases}\) \(\Leftrightarrow x\ne\frac{1+\sqrt{5}}{2}\)
Tập nghiệm của bất phương trình đã cho là
\(S=\left(1;+\infty\right)\backslash\left(\frac{1+\sqrt{5}}{2}\right)\)
Điều kiện xác định :\(x\ne-1\)
Ta có : \(\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)=1\Rightarrow\left(2-\sqrt{3}\right)=\left(2+\sqrt{3}\right)^{-1}\)
\(\Rightarrow\) Bất phương trình : \(\left(2+\sqrt{3}\right)^{x-1}\ge\left(2+\sqrt{3}\right)^{\frac{1-x}{x+1}}\)
\(\Leftrightarrow x-1\ge\frac{1-x}{x+1}\)
\(\Leftrightarrow\frac{\left(x-1\right)\left(x+2\right)}{x+1}\ge0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}-2\le x< -1\\x\ge1\end{array}\right.\)
Vậy bất phương trình có tập nghiệm là \(S=\)[ -2; -1) \(\cup\) [1; \(+\infty\))
Điều kiện \(x^2-2x\ge0\Leftrightarrow\left[\begin{array}{nghiempt}x\ge2\\x\le0\end{array}\right.\) khi đó :
Bất phương trình \(\Leftrightarrow3^{\sqrt{x^2-2x}}\ge\left(3\right)^{\sqrt{\left(x-1\right)^2}-x}\Leftrightarrow\sqrt{x^2-2x}\ge\left|x-1\right|-x\)
- Khi \(x\ge2\Rightarrow x-1>0\) nên bất phương trình \(\sqrt{x^2-2x}\ge-1\) đúng với mọi \(x\ge2\)
- Khi \(x\le0\Rightarrow x-1< 0\) nên bất phương trình \(\sqrt{x^2-2x}\ge1-2x\)
\(\Leftrightarrow\begin{cases}x^2-2x\ge1-4x+4x^2\\x\le0\end{cases}\) vô nghiệm
Vậy tập nghiệm của bất phương trình là : S = [2;\(+\infty\) )
\(\frac{2x-5}{!x-3!}+1>0\Leftrightarrow\frac{2x-5+!x-3!}{!x-3}>0\)
do !x-3!>0 mọi x khác 3=> Bất phương trình tương đương
\(2x-5+!x-3!>0\Leftrightarrow!x-3!>5-2x\)
TH(1) x<3 <=>3-x>5-2x=> x>2
Kết luận(1) \(2< x< 3\)
TH(2) \(x\ge3\Leftrightarrow x-3>5-2x\Rightarrow3x>8\Rightarrow x>\frac{8}{3}\)
Kết luận(2) \(x\ge3\)
(1)và(2) nghiệm của Bpt là: x>2
Vì \(\left(\sqrt{3+\sqrt{8}}\right)^x.\left(\sqrt{3-\sqrt{8}}\right)^x=1\)
nên đặt \(t=\left(\sqrt{3+\sqrt{8}}\right)^x>0\)
\(\Rightarrow\left(\sqrt{3-\sqrt{8}}\right)^x=\frac{1}{t}\)
Bất phương trình trở thành : \(t+\frac{1}{t}\le34\Leftrightarrow t^2-34t+1\le0\)
\(\Leftrightarrow17-6\sqrt{8}\le t\le17+6\sqrt{8}\)
\(\Leftrightarrow\left(\sqrt{3+\sqrt{8}}\right)^{-4}\le\left(\sqrt{3+\sqrt{8}}\right)^x\le\left(\sqrt{3+\sqrt{8}}\right)^4\)
Vậy tập nghiệm của bất phương trình là \(S=\left[-4;4\right]\)