Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ thấy: \(x^2+2x+2>0;x^2-2x+3>0\)
\(\Rightarrow bpt\Leftrightarrow\left(\sqrt{x^2+2x+2}\right)^2>\left(\sqrt{x^2-2x+3}\right)^2\)
\(\Leftrightarrow x^2+2x+2>x^2-2x+3\)
\(\Leftrightarrow4x>1\Leftrightarrow x>\frac{1}{4}\)
Vậy nghiệm của bpt là \(T=\left(\frac{1}{4};+\infty\right)\)
Đặt \(\hept{\begin{cases}\sqrt[3]{x+1}=a\\\sqrt[3]{2x^2}=b\end{cases}}\)
\(\Rightarrow a+\sqrt[3]{x^3+1}< b+\sqrt[3]{b^3+1}\)
Dễ thấy hàm số dạng \(f\left(t\right)=t+\sqrt[3]{t^3+1}\)đồng biến trên R nên
\(\Rightarrow a< b\)
\(\Leftrightarrow\sqrt[3]{x+1}< \sqrt[3]{2x^2}\)
\(\Leftrightarrow2x^2-x-1>0\)
\(\Leftrightarrow\orbr{\begin{cases}x>1\\x< -\frac{1}{2}\end{cases}}\)
Cách khác: Dùng liên hợp.
bpt <=> \(\left(\sqrt[3]{2x^2}-\sqrt[3]{x+1}\right)+\left(\sqrt[3]{2x^2+1}-\sqrt[3]{x+2}\right)>0\)
<=> \(\frac{2x^2-x-1}{\left(\sqrt[3]{2x^2}\right)^2+\sqrt[3]{2x^2}.\sqrt[3]{x+1}+\left(\sqrt[3]{x+1}\right)^2}\)
\(+\frac{2x^2-x-1}{\left(\sqrt[3]{2x^2+1}\right)^2+\sqrt[3]{2x^2+1}.\sqrt[3]{x+2}+\left(\sqrt[3]{x+2}\right)^2}>0\)
<=> \(2x^2-x-1>0\)
a) \(\sqrt{2x-1}< 3\)
\(\Leftrightarrow2x-1< 9\)
\(\Leftrightarrow2x< 10\)
\(\Leftrightarrow x< 5\)
\(\sqrt{2x-1}\)có nghĩa khi \(2x-1< 0\)
\(\Leftrightarrow2x< 1\)
\(\Leftrightarrow1x\le\frac{1}{2}\)
Từ đó x<1/2
\(\Rightarrow\sqrt{2x-1}< 3\)
B tương tự
a) \(\sqrt{9x}-5\sqrt{x}=6-4\sqrt{x}\) (đk: \(x\ge0\))
\(\Leftrightarrow3\sqrt{x}-5\sqrt{x}=6-4\sqrt{x}\)
\(\Leftrightarrow-2\sqrt{x}+4\sqrt{x}=6\)
\(\Leftrightarrow2\sqrt{x}=6\)
\(\Leftrightarrow\sqrt{x}=3\)
\(\Leftrightarrow\sqrt{x}=\sqrt{9}\)
\(\Leftrightarrow x=9\)(tmđk)
vậy nghiệm của phtrinh là x = 9
Giải các phương trình, bất phương trình sau:
a,-4x+5>-2
b,(√3−2)3x< hoặc = 12
c,giá trị tuyệt đối của 2x+7 =3
a, -4x + 5 > -2
<=> -4x > -7
<=> x< 7/4
Điều kiện:
\(3-2x\ge0\)
\(\Leftrightarrow x\le\frac{3}{2}\)
Ta có: \(3-2x>3\)
\(\Leftrightarrow x< 0\)