K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
21 tháng 2 2021

Lời giải:

BPT \(\Leftrightarrow \left\{\begin{matrix} x+3\geq 0\\ (x^2+4x+3)^2\leq (x+3)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq -3\\ (x+1)^2(x+3)^2\leq (x+3)^2\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq -3\\ (x+1)^2\leq 1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq -3\\ x(x+2)\leq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq -3\\ -2\leq x\leq 0\end{matrix}\right.\)

\(\Rightarrow -2\leq x\leq 0\)

19 tháng 1 2022

a, \(\left(x-3\right)\left(x^2+x-20\right)\ge0\)

\(\Leftrightarrow\) \(\left(x-3\right)\left(x-4\right)\left(x+5\right)\ge0\)

+) \(x-3=0\Leftrightarrow x=3\)\(x-4=0\Leftrightarrow x=4\)\(x+5=0\Leftrightarrow x=-5\)

+) Lập trục xét dấu f(x) (Bạn tự kẻ trục nha)

\(\Rightarrow\) Bpt có tập nghiệm S = \(\left[-5;3\right]\cup\) [4; \(+\infty\))

b, \(\dfrac{x^2-4x-5}{2x+4}\ge0\)

\(\Leftrightarrow\) \(\dfrac{\left(x-5\right)\left(x+1\right)}{2x+4}\ge0\)

+) \(x-5=0\Leftrightarrow x=5\)\(x+1=0\Leftrightarrow x=-1\)\(2x+4=0\Leftrightarrow x=-2\)

+) Lập trục xét dấu f(x) 

\(\Rightarrow\) Bpt có tập nghiệm S = (-2; -1] \(\cup\) [5; \(+\infty\))

c, \(\dfrac{-1}{x^2-6x+8}\le1\)

\(\Leftrightarrow\) \(\dfrac{\left(x-3\right)^2}{\left(x-4\right)\left(x-2\right)}\ge0\)

+) \(x-3=0\Leftrightarrow x=3\)\(x-4=0\Leftrightarrow x=4\)\(x-2=0\Leftrightarrow x=2\)

+) Lập trục xét dấu f(x)

\(\Rightarrow\) Bpt có tập nghiệm S = (\(-\infty\); 2) \(\cup\) (4; \(+\infty\))

Chúc bn học tốt!

Bài 1: 

a: \(\Leftrightarrow x^2-5x+6< =0\)

=>(x-2)(x-3)<=0

=>2<=x<=3

b: \(\Leftrightarrow\left(x-6\right)^2< =0\)

=>x=6

c: \(\Leftrightarrow x^2-2x+1>=0\)

\(\Leftrightarrow\left(x-1\right)^2>=0\)

hay \(x\in R\)

Bài 2:

a: =>2x^2-4x+1=x^2+x+5

=>x^2-5x-4=0

=>\(x=\dfrac{5\pm\sqrt{41}}{2}\)

b: =>11x^2-14x-12=3x^2+4x-7

=>8x^2-18x-5=0

=>x=5/2 hoặc x=-1/4

17 tháng 11 2019

(2x – 1)(x + 3) – 3x + 1 ≤ (x – 1)(x + 3) + x2 – 5

⇔ 2x2 + 6x - x – 3 – 3x + 1 ≤ x2 + 3x - x – 3 + x2 – 5

⇔ 2x2 + 2x – 2 ≤ 2x2 + 2x – 8

⇔ 6 ≤ 0 (Vô lý).

Vậy BPT vô nghiệm.

NV
26 tháng 3 2022

\(f\left(x\right)=\dfrac{\left(3x-4\right)\left(2x-3\right)}{\left(x^2-5x+6\right)\left(5-x\right)}>0\)

\(\Leftrightarrow\dfrac{\left(3x-4\right)\left(2x-3\right)}{\left(x-2\right)\left(x-3\right)\left(5-x\right)}>0\)

Bảng xét dấu:

undefined

Từ bảng xét dấu ta thấy nghiệm của BPT là: \(\left[{}\begin{matrix}x< 5\\\dfrac{3}{2}< x< 2\\3< x< 5\end{matrix}\right.\)

6 tháng 2 2019

x 2   -   2 x   +   3   >   0   ⇔   ( x   +   1 ) 2   +   2   > 0 (đúng với mọi x)

10 tháng 8 2019

( x 2   /   3 )   +   3 x   +   6   <   0   ⇔   x 2   +   9 x   +   18 < 0 ⇔ -6 < x < -3

22 tháng 4 2019

Đáp án: D