K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(x^2-2x+3\left|x-1\right|< 3\)

\(-3< x-1< 3\)

\(-2< x< 4\)

\(x\in\left\{-1;0;1;2;3\right\}\)

2 tháng 5 2022

      `x - ( 2x - 1 ) <= 3x - 3`

`<=> x - 2x + 1 <= 3x - 3`

`<=> 3x - x + 2x >= 1 + 3`

`<=> 4x >= 4`

`<=> x >= 1`

Vậy `S = { x | x >= 1 }`

2 tháng 5 2022

\(\Leftrightarrow x-2x+1\le3x-3\)

\(\Leftrightarrow-4x\le-4\)

\(\Leftrightarrow x\ge1\)

28 tháng 2 2020

x(x2+6x+9) - 3x= x3+6x2+12x+8+1

\(\Leftrightarrow\)x3+6x2+9x-3x=x3+6x2+12x+9

\(\Leftrightarrow\)6x=12x+9

\(\Leftrightarrow\)6x=-9

\(\Leftrightarrow\)x=-3/2

Vậy phương trình có 1 nghiệm duy nhất x=-3/2

28 tháng 2 2020

x(x + 3)^2  - 3x = (x + 2)^3 + 1

<=> x(x^2 + 6x + 9) = x^3 + 6x^2 + 12x + 8 + 1

<=> x^3 + 6x^2 + 9x = x^3 + 6x^2 + 12x + 9

<=> 3x + 9 = 0

<=> 3x = -9

<=> x = -3

1 tháng 11 2021

\(\dfrac{2x-3}{x-1}< \dfrac{1}{3}\left(đk:x\ne1\right)\)

\(\Leftrightarrow6x-9< x-1\Leftrightarrow5x< 8\Leftrightarrow x< \dfrac{8}{5}\) và ĐK \(x\ne1\)

\(\dfrac{2x-3}{x-1}>\dfrac{1}{3}\left(đk:x\ne1\right)\)

\(\Leftrightarrow x-1< 6x-9\Leftrightarrow5x>8\Leftrightarrow x>\dfrac{8}{5}\) và ĐK \(x\ne1\)

21 tháng 1 2019

a) |3x| = x + 6 (1)

Ta có 3x = 3x khi x ≥ 0 và 3x = -3x khi x < 0

Vậy để giải phương trình (1) ta quy về giải hai phương trình sau:

+ ) Phương trình 3x = x + 6 với điều kiện x ≥ 0

Ta có: 3x = x + 6 ⇔ 2x = 6 ⇔ x = 3 (TMĐK)

Do đó x = 3 là nghiệm của phương trình (1).

+ ) Phương trình -3x = x + 6 với điều kiện x < 0

Ta có -3x = x + 6 ⇔ -4x + 6 ⇔ x = -3/2 (TMĐK)

Do đó x = -3/2 là nghiệm của phương trình (1).

Vậy tập nghiệm của phương trình đã cho S = {3; -3/2}

ĐKXĐ: x ≠ 0, x ≠ 2

Quy đồng mẫu hai vễ của phương trình, ta được:

Vậy tập nghiệm của phương trình là S = {-1}

c) (x + 1)(2x – 2) – 3 > –5x – (2x + 1)(3 – x)

⇔ 2x2 – 2x + 2x – 2 – 3 > –5x – (6x – 2x2 + 3 – x)

⇔ 2x2 – 5 ≥ –5x – 6x + 2x2 – 3 + x

⇔ 10x ≥ 2 ⇔ x ≥ 1/5

Tập nghiệm: S = {x | x ≥ 1/5}

9 tháng 5 2021

\(\dfrac{x}{2x-6}-\dfrac{x}{2x+2}=\dfrac{2x}{\left(x+1\right)\left(x-3\right)}\left(ĐKXĐ:x\ne-1,x\ne3\right)\)

\(\Leftrightarrow\dfrac{x}{2\left(x-3\right)}-\dfrac{x}{2\left(x+1\right)}=\dfrac{2x}{\left(x+1\right)\left(x-3\right)}\)

\(\Leftrightarrow\dfrac{x\left(x+1\right)}{2\left(x+1\right)\left(x-3\right)}-\dfrac{x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}=\dfrac{2x\cdot2}{2\left(x+1\right)\left(x-3\right)}\)

\(\Rightarrow x\left(x+1\right)-x\left(x-3\right)=4x\)

\(\Leftrightarrow x^2+x-x^2+3x=4x\)

\(\Leftrightarrow x^2+x-x^2+3x-4x=0\)

\(\Leftrightarrow0x=0\)

Phương trình có vô số nghiệm , trừ x = -1,x = 3

Vậy ...

\(\dfrac{12x+1}{12}< \dfrac{9x+1}{3}-\dfrac{8x+1}{4}\)

\(\Leftrightarrow12\cdot\dfrac{12x+1}{12}< 12\cdot\dfrac{9x+1}{3}-12\cdot\dfrac{8x+1}{4}\)

\(\Leftrightarrow12x+1< 4\left(9x+1\right)-3\left(8x+1\right)\)

\(\Leftrightarrow12x+1< 36x+4-24x-3\)

\(\Leftrightarrow12x+1< 12x+1\)

\(\Leftrightarrow12x-12x< 1-1\)

\(\Leftrightarrow0x< 0\)

Vậy S = {x | x \(\in R\)}

 

12 tháng 4 2022

\(a,\dfrac{x-3}{x}=\dfrac{x-3}{x+3}\)\(\left(đk:x\ne0,-3\right)\)

\(\Leftrightarrow\dfrac{x-3}{x}-\dfrac{x-3}{x+3}=0\)

\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x+3\right)-x\left(x-3\right)}{x\left(x+3\right)}=0\)

\(\Leftrightarrow x^2-9-x^2+3x=0\)

\(\Leftrightarrow3x-9=0\)

\(\Leftrightarrow3x=9\)

\(\Leftrightarrow x=3\left(n\right)\)

Vậy \(S=\left\{3\right\}\)

12 tháng 4 2022

\(b,\dfrac{4x-3}{4}>\dfrac{3x-5}{3}-\dfrac{2x-7}{12}\)

\(\Leftrightarrow\dfrac{4x-3}{4}-\dfrac{3x-5}{3}+\dfrac{2x-7}{12}>0\)

\(\Leftrightarrow\dfrac{3\left(4x-3\right)-4\left(3x-5\right)+2x-7}{12}>0\)

\(\Leftrightarrow12x-9-12x+20+2x-7>0\)

\(\Leftrightarrow2x+4>0\)

\(\Leftrightarrow2x>-4\)

\(\Leftrightarrow x>-2\)

6 tháng 1 2019

a) (x + 2)(x – 1) < (x + 3)2 – 5 ⇔ x2 – x + 2x – 2 < x2 + 6x + 9 – 5

⇔ x – 6x < 2 + 4 ⇔ –5x < 6 ⇔ x > -6/5

Tập nghiệm : S = {x | x > -6/5}

⇔ 6 + 2(2x + 1) > 2x – 1

⇔ 6 + 4x + 2 > 2x – 1 ⇔ 2x > – 9 ⇔ x > -9/2

Tập nghiệm: S = {x | x > -9/2}

13 tháng 4 2021

a, \(\dfrac{x+1}{x+3}>1\Leftrightarrow\dfrac{x+1}{x+3}-1>0\Leftrightarrow\dfrac{x+1-x-3}{x+3}>0\)

\(\Rightarrow x+3< 0\)do  -2 < 0 

\(\Rightarrow x< -3\)Vậy tập nghiệm BFT là S = { x | x < -3 } 

b, \(\dfrac{2x-1}{x-3}\le2\Leftrightarrow\dfrac{2x-1}{x-3}-2\le0\Leftrightarrow\dfrac{2x-1-2x+6}{x-3}\le0\)

\(\Rightarrow x-3\le0\)do 5 > 0 

\(\Rightarrow x\le3\)Vậy tập nghiệm BFT là S = { x | x \(\le\)3 } 

c, \(\dfrac{x^2+2x+2}{x^2+3}\ge1\Leftrightarrow\dfrac{x^2+2x+2}{x^2+3}-1\ge0\)

\(\Leftrightarrow\dfrac{x^2+2x+2-x^2-3}{x^2+3}\ge0\Rightarrow2x-1\ge0\)do x^2 + 3 > 0 

\(\Rightarrow x\ge\dfrac{1}{2}\)Vậy tập nghiệm BFT là S = { x | x \(\ge\)1/2 } 

 

 

13 tháng 4 2021

mình ko chắc nên mình đăng sau :> 

d, \(\dfrac{2x+1}{x^2+2}\ge1\Leftrightarrow\dfrac{2x+1}{x^2+2}-1\ge0\Leftrightarrow\dfrac{2x+1-x^2-2}{x^2+2}\ge0\)

\(\Rightarrow-x^2+2x-1\ge0\Rightarrow-\left(x-1\right)^2\ge0\)vô lí 

24 tháng 5 2017

a) (x + 1)(2x – 2) – 3 > –5x – (2x + 1)(3 – x)

⇔ 2x2 – 2x + 2x – 2 – 3 > –5x – (6x – 2x2 + 3 – x)

⇔ 2x2 – 5 ≥ –5x – 6x + 2x2 – 3 + x

⇔ 10x ≥ 2 ⇔ x ≥ 1/5

Tập nghiệm: S = {x | x ≥ 1/5}

b) (x – 3)2 + 4(2 – x) > x(x + 7)

⇔ x2 – 6x + 9 + 8 – 4x > x2 + 7x

⇔ –17x > –17

⇔ x < -17/-17

⇔ x < 1

Tập nghiệm: S = {x | x < 1}.